Final report

1.1 Project details

Project title	XL-Blade										
Project identification (pro- gram abbrev. and file)	64015-0086 EUDP 2015 I-II: ERA-NET Cofund DemoWind-1, XL Blade										
Name of the programme which has funded the project	DemoWind										
Project managing compa-	ADWEN Offshore, S.L.										
dress)	Avda Ciudad de le Innovacion 9-11, Sarriguren, SPAIN										
Project partners	ADWEN Offshore S.L										
	LM Wind Power A/S										
	ORE Catapult Development Services Limited										
CVR (central business register)	76490511										
Date for submission	1/7-2019										

1.2 Short description of project objective and results

[English]

Achieving the ambitious EU target of 27% renewable penetration by 2030 requires step-change technological innovations across all sectors of renewables, paving the way for industrialization and scale. Within this context, offshore wind has proven its viability as a mature utility-scale contributor to the EU energy mix, with substantial cost reductions achieved over the past decade, and a similar trajectory as onshore wind towards grid parity. Within an offshore wind turbine system, the rotor set is one of the most influential ways to reduce total cost of energy.

The overarching program objective of the consortium is to reduce the overall offshore wind cost of energy by merging the technological leadership of three offshore industry leaders across three participating countries to design, validate and deploy the world's largest offshore wind turbine blade.

Specific technological objectives are design, manufacturing and in-field validation of blade approaching 90m in length with aggressive weight targets:

- Definition of the optimum fiber, resin and laminating process with respect to structural properties, weight and cost.
- Tackling industry-plaguing issue of blade erosion through development of new coating and application systems.
- Characterization of offshore atmospheric conditions affecting blade erosion, to enable the development of new coatings.
- Defining real-scale laboratory tests that reproduce relevant environmental conditions over the operating lifetime of the blade.
- Demonstration of the blade technology readiness at the test bench level.
- Demonstration of project results via field validation in a full-scale offshore wind turbine prototype.

[Dansk] (review)

At nå det ambitiøse EU-mål om 27% vedvarende energi penetration inden 2030 kræver trinvise teknologiske nyskabelser på tværs af alle sektorer af vedvarende energi, hvilket baner vejen for industrialisering og opskallering. Inden for denne sammenhæng har havvinden vist sit potentiale som en moden energikilde som bidrag til EU's energimix med betydelige omkostningsreduktioner opnået i løbet af det sidste årti med en lignende tendens mod LCoE som landvind har gjort. Ser man på offshore vindmøller så er rotorsættet en af de områder der kan reducere de samlede energikostninger mest effektivt.

Konsortiets overordnede programmål er at reducere den samlede offshore-vind CoE ved at kombinere teknologiske lederskab fra tre af offshore-branchens ledere fra tre lande til at designe, validere og bygge verdens største offshore-vind turbine vinge.

Specifikke teknologiske målsætninger er design, fremstilling og validering af vinger der nærmer sig 90m i længden med aggressivt reduceret vægtmål:

• Definering af den optimale fiber-, resin- og lamineringsproces med focus på strukturelle egenskaber, vægt og omkostninger.

• Addressering af et i vindindustrien vedkendt spørgsmål om forkantserosion ved at udvikle nye coating og applikationssystemer.

• Karakterisering af offshore atmosfæriske forhold, der påvirker forkantserosion, for at muliggøre udvikling af nye beskyttelsessystemer.

• Definere laboratorieforsøg i skala, der representere relevante miljøforhold i løbet af bladets levetid.

• Demonstration af vingeteknologibesparelsen i test regi.

• Demonstration af projektresultater via feltvalidering i en fuldskala offshore vindturbine prototype.

1.3 Executive summary

LM has advanced carbon-glass mix, infusion resin and blade leading edge erosion technology from TRL 5 to TRL 7 by manufacturing an ultra-long wind turbine blade with the above technologies and optimized laminating processes and demonstrated the result in field validation in a full-scale offshore wind turbine prototype.

1.4 Project objectives

LM's blade design will include a cost-efficient use of a mix of glass and carbon fibre fabrics resulting in significant blade weight reduction compared to state-of-the art glass fiber blade designs. LM will apply a Design-for-Manufacturing rationale suitable for production of large wind turbine blades in small series at competitive costs, while maintaining high quality and performance standards. A novel leadingedge protection system will be developed especially designed for the harsh offshore environment resulting in a tenfold improvement of protection against leading edge erosion compared to standard protective tapes.

Disadvantages:

The XL-Blade with a length approaching 90 m is significantly larger than the largest blade designed, manufactured and tested by the consortium's partners. The mere size of the blade will provide result in new challenges in manufacturing and testing. Manufacturing process will have to be adjusted beyond known capabilities. Further manufacturing and testing equipment will have to be re-designed to accommodate the ultra-long XL-Blade.

Technology Readiness Level (TRL). The XL-BLADE Project has advanced the proposed technologies from Technology Readiness Levels 5 to Technology

Readiness Levels 7.

o TRL5: Component and/or breadboard validation in a relevant environment.
LM has already tested at coupon level the integration of carbon material with vinyl-ester resin and the compatibility with standard polyester

resin for the glass-fibre components. The new approach for the process handling and process-flow-chart distribution has also been tested and are at TRL 5.

o **TRL7**: system prototype demonstrated in an operational environment.

• The XL-Blades will be demonstrated in a full scale 8MW wind turbine from ADWEN.

• The testing procedures for large offshore blades (single axial and bi-axial fatigue testing) will be demonstrated by means of a real scale test on LM's XL-blade

The **LM-XL-Blade** will be built with the newly developed hybrid carbon/glass fibre technology, which will lead blade weight of 32-35 tonnes and to a cost below a full carbon fibre technology. The main challenges to be solved:

- The optimal carbon/glass fibre blend
- The processability of the hybrid fabric and different resin systems.
- Design of the trailing edge geometry and the lay-up.

Lightning protection of the hybrid carbon/glass main laminate structure.
 The mere size of the XL-Blade will provide challenges in manufacturing and testing.
 Manufacturing process will have to be adjusted beyond known capabilities.
 Further manufacturing and testing equipment will have to be re-designed to accommodate the ultra-long XL-Blade. The detailed structural design will be performed following a Design-for-Manufacturing concept, which is the basis of standard LM designs. Sub-components with the specific structural details will be designed, manufactured and tested in order to find an optimal solution on a sub-scale level. Some of the manufacturing processes will be tested in real size test trails in order to secure performance.

A novel **leading-edge protection system** with superior lifetime performance compared to standard protective will be developed. The performance of the developed

protection system will be validated accelerated in a rain erosion tester simulating the harsh offshore environmental conditions. Further the final leading edge protection system will be tested in-field in a real offshore environment. The key challenge when **specifying the blade erosion** test is to determine the relevant testing

conditions representative of erosion in offshore environment. There is a lack of information on relevant parameters namely the droplet size distribution in relevant offshore wind environment, so test conditions specified in the erosion rig tests are largely speculative.

The initial project plan was updated in month 18 (see Figur 1and Figur 2) to reflect the actual task execution. The majority of the blade development tasks has been accelerated to secure blade readiness in due time for blade testing and prototype manufacturing.

År 2015 2016									_			203	17									20	18																
Work packages/Projektets arbejdspakker:	1	2	3	4 5	6	7	8	9 10	11	12	1	2 3	4	5	6	7	8 9	10	11 1	2 1	1 2	3	4	5	6	8	9	10	11 :	12	1 2	3	4	5	6 7	8	9 1	10 1	1 12
WP 1: Project management																																							
Task 1.1: Project management and risk contingency planning																																							
Task 1.2: Component type certification																																							
Task 1.3: Dissemination of project results and project reporting																																							
WP 2: Blade design																																							
Task 2.1: Aero and Pre-design							Т								M1																						T	T	
Task 2.2: Detailed structural design																			M2																				
Task 2.3: Design of blade structure for handling and transport																																							
Task 2.4: Design of sub-components for sub-component testing																																							
WP 3: Materials & processes							Т																															T	
Task 3.1: Test and select optimal fiber and resin																																							
Task 3.2: Design and test of manufacturing process																																							
Task 3.3: Development and testing of a leading edge protection system							Т																														T	T	
																																					T	T	
WP 4: Design and manufacture of production equipment																					MB																		
Task 4.1: Design and manufacture of moulds and hinge system																																							
Task 4.2: Design and manufacture of production equipment																																							
Task 4.3: Design and manufacture logistic equipment																																						T	
WP 5: Blade and sub-component production																																							
Task 3.1: Manufacture of sub-components							Т																											Т			T	T	
Task 5.2: Preparation for blades production																																							
Task 5.3: Manufacture of test blade #1																																							
Task 3.4: Manufacture of test blade #2																																						T	
Task 5.5: Manufacture of 2 prototype rotors (6 blades)																																					T	T	
WP 6: Blade and sub-component testing																																							
Task 6.1: Sub-component testing																																							
Task 6.2: Development of blade test equipment and facility																																						T	
Task 6.2: Static test of test blade #1																									M4														
Task 6.3: Fatigue test of test blade #1																																							
Task 6.4: Post fatigue static test of test blade #1							Т																													M5	T	T	
																																					T	T	
WP 7: Field validation												1																											
Task 7.1: Installation and commisioning of 2 prototype rotors																																							
Task 7.2: Blade inspections																	1			1																		T	
									_						_								_														_	_	_

Figur 1: Initial project plan

-	1	1	1	<u> </u>	15	2016	_	_		_		_	_	_	-	2017										20									
Work parkages/Projektets arbeidspakker	Leader:	Adver	1.04	0051	12	1	2	2	<u>a</u> =	6	7	8	al 10	1 11	12	1	2	2	a 1	s 6	7		9	10	11 1	2 1	1 2	1	4	5	<u> </u>		-	10 1	1 12
their participant of the participant.	acour.	- and	Project	Month		-	-	-		e e	-	-	0 10		43	12	-	45 4		7 40	10	20	24	22	72 7	1 70	26	22	20	-	0 21	22	22	24 2	c 26
WP 1: Project management	Adver		riojeu			-	-	-				•	3 10		-		-	10 1		/ 10	19	20					20		20 1			~		<u> </u>	30
Tark 1.1: Project management and risk contingancy planning	Adven	÷.	÷.	÷.																															-
Task 1.2: Interfect management within management	Adver	-	÷.	<u></u>		-+	-	+				+	+		\vdash		-+		+	+-		-	-	-+		+		+	-	+	+-	++	-	+	
Task 1.2: Intellectual Property rights management.	Adven		-			-+	-	+				+	+		\vdash		-+		+	+-		-	-	-+		+		+		+	+-	++	-	+	
Task 1.4: Evaluation of project results	Adven	×	-	<u>~</u>		-									$ \rightarrow $		-+	-	+	+		-	-	-+		+	-	\mapsto	-	+	+-	++	-	+-	+
Test 1.4. Exploration of project resold	Averal	^	-	^	+	-+	-	+		- 1		+	+				-			+		-		-							+-			+	+
WE To Direct design	A	-	-	-													-		+	+		-+	-	-		+		++	-	+	+	++	+	+	+
WF 2. blade design	Advete			-												Mas	+		+	+		-	-	-		+-		++	-	+	+-'	++	+	+	+
Task 2.1 Acto and Pre-design	Advect	*		-		-+	-	+		M2	-	+	+		\vdash		-+	-	+	+		-+	-	-+	-	+-		++	-	+	+	++	+	+	+
lask 2.2. Detailed structural design	Agwen	×	×	-		-+	-	+				+	+		\vdash		-+	-	+	+		-	-	-	-	+-		++	-	+	+-'	++	+	+	+-
Task 2.3: Design of blade structure for handling and transport	UM .	-	×			-+	-	+				+	+				-+	-	+	+		-	-	-+	-	+-		++	-	+	+-'	⊢	-	+	+-
Task 2.4: Design of sub-components for sub-component testing	Adwen	x	x	<u> </u>		-	_	+			M2.2	+	+		\vdash		-	-	+	+		-	-	-	-	+-		\mapsto	-	+	+-	++	+	+	+-
		-		<u> </u>			_												_	_		_	_	_		-		\vdash	+	_	+	⊢	+	+	+
WP 3: Materials & processes	UM	x	x	<u> </u>		_	_											_					_	_	_	-		\mapsto	+	+	+-'	\vdash	+	+	+
Task 3.1: Test and select optimal fiber and resin	DM	×	x	-		-+	_	+				+	+		$ \rightarrow $		\rightarrow	_	+	+		-	-	-		+-		++	+	+	+-'	\vdash	+	+	+-
Task 3.2: Design and test of manufacturing process	UM .	×	×	-		-	-	-			MB.1						+	-						+	-	-		\mapsto	+		+	⊢	+	_	+
Task 3.3: Development and testing of a leading edge protection system	IM	x	x	I																								$ \rightarrow $				+	N	/3.2	+
																	_			-						-		+	_		+	\downarrow	\rightarrow	+	+
WP 4: Design and manufacture of production equipment	UM	x	x								M4.1		_				_		_	-						_		+	_		+	+	\rightarrow	+	+
Task 4.1: Design and manufacture of moulds and hinge system	LM	×	×												\square		-							-				$ \rightarrow $	\rightarrow		+	\vdash	+	+	+
Task 4.2: Design and manufacture of production equipment	LM	×	×																					\rightarrow				\square					\rightarrow	\perp	+
Task 4.3: Design and manufacture logistic equipment	LM .	×	x																			_						\square							
WP 5: Blade and sub-component production	LM .	x	x																																
Task 5.1: Manufacture of sub-components	LM .	x	x																																
Task 5.2: Preparation for blades production	LM	x	x																																
Task 5.3: Manufacture of test blade LM#1 + LM#2	LM	х									LM#1	M	5.2 &	M5.3																					T
Task 5.3: Manufacture of test blade ADWEN#1	Adwen		×									_	Ach	Nen#1		MD.1													_		-		-	+	\mathbf{T}
Task 5.4: Manufacture of 2 prototype rotors (6 blades)	LM.	×	х									UN	1 rotor	M5.	4														_		-			+	\top
																				-									-		+	+	-	-	+
WP 6: Coupon, sub-component and blade testing	ODSL	×	x	×																															
Task 6.1: Sub-component testing	LM	×	x								M6.1																		_				_		1
Task 6.2: Development of blade test equipment and facility	ODSL	×	x	×				+				+	+																N	16.2	+	+	+	+	+
Task 6.3: Static test of test blade M#1	IM												1.46				-									-			_		+	+	-	-	+
Task 6.4: Fatigue test of test blade LM#1	LM	-	×	-		-		+					-	T 1			-		M	5.4		-	-	-		+			-	+	+	++	+	+	+
Task 5 3: Post fatigue static test of test blade (M#1	IM					-		+				+								MG		-	-	-		+			-	+	+	+	+	+	+
Task 6.5. State task of task blade ADM/DMH	0051		^		+ +	-+	-	+				+	+				-			- THE	í –	MEG		-		+			-	+	+	++	+	+	+
Tark 6.7: Eatinue test of test black ADW/ENH1	0050	÷.		÷.	+ +	-+	-	+		- 1		+	+		\vdash		+			-			-	+		+		++	-	+	+	++	+	+	+
Task 6.0: Boot fallous statisticat of test blade ADM/DMM	0000	-		÷.	+ +	-+	-	+		- 1		+	+		\vdash		+	-	+	+		-+	-	+	-	+		++	-	+	+	++	+	+	+-
Task 6.0. Post logge static test of test blade ADWENW1	ODSL		~	÷.	+	-+	-	+	-	+ +		+	+				-+		+	+		-+	-	-	2.4					+	+	++	+	+	+-
Tark 6.10: Diavisi fatimus test of test blade 15/02	ODSL	-	÷.	÷.	+	-+	-	+		+ +		+	+		\vdash		-	-	+	+		-+	-	-	100	1		ľ	10.2		+		-	- 14	
Test C. M. Dest fallen a della test of test blade 15.002	0000	-			+ +	-+	-	+		- 1		+	+				-		+	+		-	-	-		+					┯			-	Tur
Task 6.11. Post laugue static test of test bidde briez	Obsc	-			+ +	-+	-	+		- 1		+	+		\vdash		+	-	+	+		-	-	+	-	+		++	-	+	+	++	+	+-	- MIG.
		-	-	-	+	-	-	+		- 1		+	+		\vdash		-	_	-	-		_	_	-	_	-			_	-	_		-	-	-
WP 7: Field validation	Adwen	x	x	×	+	-+	-	+	-			+	+		\vdash		-+	-				_	_								-				4
Task 7.1: Installation and monitoring of prototype rotor #1	DM .	×	x	-	+	-+	-	+				+	+-		$ \rightarrow $		-+	_		-		_	-	-		-		+	N	17.1	-	++	-	+	4
Task 7.2: Biade inspection rotor #1	DM .	-	x	<u> </u>	+	-	_	_				_	_				-		_	+		-	-	-		+		⊢	_		+'	⊢	+	+	+-
Task 7.3: Installation and monitoring of prototype rotor #2	Adwen	x		<u> </u>	+	\rightarrow		+				_	+		\vdash		\rightarrow		+	+		_	_	_		+		\mapsto	+	+	+-'	\vdash	+	+	+
Task 7.4: Blade inspection rotor #2	Adwen	×						_									_		_	_		_	_	_		+		+	_		+	\vdash	_	\perp	_
Task 7.5: Analysis and conclusions	Adwen	×	x	×		-	_	+				+	_				-		-	-		_	-	-		+		$ \rightarrow $	_	+	+-	\vdash	_	+	4
		-			+	_	_	+	-			+	+				-		-	-		_	_						_			$ \rightarrow $	_	_	+
WP 8: Environmental characterisation of parameters relevant to blade erosion	ODSL	×	x	×									-									- 1													Æ.
Task 8.1: Specification, procurement and comissioning of sensor array.	ODSL			×		T																						1	M8.1						
Task 8.2: Data collection, validarion and analysis	ODSL			×																												MS.2			MS.
Task 8.3: Correlation of results with the XL-Blade specifications	ODSL	×	×	×																		T		T											M8.
	1					T	T	T				T	T_		17		T	T	T					T	T				T	T			T	T	
L								_		-		_	_		_			_	_		-	_	_	- 1	_	_	-	<u> </u>		_	<u> </u>	يل حد			_

Figur 2: month 18 updated project plan

1.5 Project results and dissemination of results

Deliverable	Deliverable name	Work	Lead	Estimated	Means of verification (evidence	Completed (yes/no - new ex-
number		package	Partner	delivery date	of deliverable)	pected delivery date)
D2 1	Mataviala fau tha VI, DIADEC	number	1.54	Mauth 25	Deneut	Vaa
D3.1	Materials for the XL-BLADES.	WP3	LM	Month 25	Report	Yes
D3.2	Manufacturing process.	WP3	LM	Month 25	Report	Yes
D3.3	Leading edge protection system.	WP3	LM	Month 25	Report	Yes
D4.1	Moulds and hinge system.	WP4	LM	Month 15	Equipment (Mould with hinge sys- tem at manufacturing facilities)	Yes
					Equipment (Additional production	
D4.2	Production equipment	WP4	LM	Month 15	equipment at manufacturing facili-	Yes
					ties)	
D4 2	Logistic ogvinment		1.54	Manth 1E	Equipment (Logistic equipment at	Vec
D4.3	Logistic equipment.	VVP4		MONULI 15	manufacturing facilities)	res
	Test Diada M#1		1.54	Manth 17	Prototype: First test blade LM#1	Vac
D5.2		WPS	LM	Month 17	delivered for bench testing	res
D5 3	Tost Blado I M#2	W/D5	LM	Month 20	Prototype: Second test blade	Voc
03.5		WFS		Month 20	LM#2 delivered for bench testing	165
D5 4	First prototype rotor	W/D5	IM	Month 19	Prototype: First prototype rotor	Vec
05.4		VVF J		MONULIS	delivered for field test.	
D6 2	Commissioning report for new	WP6	IM	Month 17	Report	No new test equipment acquired
00.2	testing equipment.	WIO		Honen 17		No new test equipment dequired
D6 3	Test specification & test report for	WP6	IM	Month 25	Report	Yes
00.5	LM#1 blade static test.	WIO		1101111 25		105
	Test specification & test report for	WP6	LM	Month 31	Poport	Voc
00.4	LM#1 blade fatigue test.	VVFO		Month SI	Report	
D6 5	Test specification & test report for	WP6	LM	Month 32	Poport	Yos
00.5	LM#1 blade postfatigue test.	VVFO		MUTULI 32	Report	
D7.1	Inspection of Rotor#1.	WP7	LM	Month 28	Report	Not avalible

1.6 Utilization of project results

Link to LM 88.4P press release: http://cws.huginonline.com/L/160830/PR/201606/2021942_5.html

Link to LM Wind Power – LM 88.4P promotion web page https://www.lmwindpower.com/en/products-and-services/blade-types/longest-blade-in-theworld

Flyer from ORE Catapult – Bi-axial test capability and cooperation with LM Wind Power on test of LM 88.4P

1.7 Project conclusion and perspective

During the project it was shown that a +88 meter wind turbine blade can be manufactured and by combining innovative materials and methods two of the industry hurdles has been addressed.

- □ Reducing leading edge erosion by developing a protection system including application process
- Keeping blade weight at an acceptable level in this case within range of 32-35 ton by introducing new material technology with optimized blend of carbon and glass fibre along with a new resin system

During the project a new manufacturing setup was developed to enable the production of the blades. A prototype rotor set was manufactured by LM Wind Power and installed on proto-type turbine by ADWIN.

Two LM88.4P test blades were manufactured and tested according to IEC-61400-23 to obtain component certificate.

Finally, one LM88.4P test blade was delivered to OREC, UK and fatigue tested in a bi-axial test setup as part of development of a setup and evaluation SW tool.