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1.2 Short description of project objective and results

The objective of the project “Lidar detection of wakes for wind turbine optimization” was to make nacelle
mounted, forward-looking wind lidars with a limited amount of beams deliver robust signals for wind
turbine control in wake situations. This objective was met and the lidars by Windar Photonics now
includes a robust wake detection algorithm.

Wake situations also create high mechanical loads on the turbine, which in turn can lead to costly
repairs and production losses. How to operate the wind turbine in wake situations is therefore also an
important question. In Lidar detection of wakes for wind turbine optimization, we have investigated how
to alleviate loads while maintaining a high level of electricity production. Our results point to potential
gains regarding less loads on the turbine if the wind turbine is yawed relative to the wind direction.
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1.3 Executive summary

The ”Lidar detection of wakes for wind turbine optimization project” initiated in October 2016 in collab-
oration between DTU and Windar Photonics A/S aimed at characterising the wake from an upstream
wind turbine with a nacelle mounted Lidar in order to develop a strategy to alleviate loads on the turbine
the Lidar is installed on while keeping its power output.

The project was separated into several work packages including the Development of a wake detec-
tion algorithm, the test and verification of this algorithm on real world installation, a turbine simulation
part and the compensation of the wind direction in wake situations. Finally an administrative work pack-
ages was dedicated to project management.

Throughout the project the wake detection algorithm has been successfully developed, tested and
documented in journal and conferences papers [1], [2]. The development of this algorithm went through
several iterations in order to fit the theoretical initial strategy to real world data gathered on several wind
turbines subject to different terrain complexity. Some turbine and compensation strategies have also
been investigated and documented in journal and conferences papers [3], [4], [5]. Unfortunately due a
change of plan the V52 turbine at Risoe DTU originally planned to test the wake compensation strategy
could not be used so that the final testing has been delayed. The potential of the yaw strategy potential
had then to be tested in supervised on-site experiments rather than in a full-scale experiment. It will
also take place with some commercial partners of Windar Photonics A/S. All the milestones from M1 to
M4 could thus be achieved but the milestone M5 has to happen outside the project timeline.

Despite the lack of final testing the project was a success and had lead Windar Photonics to increase
its business focus in this area as wake problems are a major issue in the industry that is so far not
addressed at a turbine level. It has been proven throughout this project that the wake effects from an
upstream turbine can be effectively measured by a Lidar (see 1.5.1) and that following a certain yaw
strategy while those effects were occurring lead to a load alleviation on main components of the turbine
(see 1.5.8). Provided that the experiment about to happen with Windar’s commercial partner confirms
the project’s findings it will result in additional visibility of the Windar products on the market thanks
to their unique features. Furthermore, in order to mitigate the effect of not having access to the V52
wind turbine at DTU Risoe, Windar came up with the idea to adapt its current WindTimizer technology
to implement a given yaw strategy as explained in 1.6. This means that the current solution can be
implemented not only towards the wind turbine manufacturers market but also the retrofit market as no
change in the turbine controller is necessary when using the WindTimizer. It thus gives Windar a unique
advantage to lead this market.
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1.4 Project Objectives

Windar Photonics A/S sells two lidars to the wind turbine industry; the WindEye lidar with two beams
and the WindVision lidar with four beams. The lidars are placed on the nacelle of the lidar and the laser
beams are focused ahead of the turbine and measure the wind before it hits the turbine. The output
of the lidars is primarily used for optimizing the alignment of the wind turbine to the wind direction.
However, when the wind turbine is in a wake of a different turbine, the original measurement principle
behind the lidar instruments fails and the lidar signals cannot be trusted to the yaw the turbine correctly.

The overall objective of the project was to make the products by Windar Photonics deliver reliable
information to the control system of the wind turbine also in wake situations.

This objective was split into three parts:

• Wake detection using WindEye and WindVision lidars.

• Wake compensation; once a wake has been detected, information on the true wind direction
should be obtained.

• Wake opitmization investigating how to optimize production and alleviate loads in situations where
the wind turbine is in wake.

The project work was originally structured into five work packages, in which the project members
worked towards carefully formulated mile stones and deliverables. In parallel, meetings for all project
members were organized approximately monthly to bi-monthly throughout the project. The three goals
stated above became clearer during the project and towards the end of the project, the reporting and
work towards these goals were in the center of all meetings.

Important smaller steps in the project were formulated into five mile stones and six deliverables.
Below, each milestone and deliverable is stated. All deliverables and mile stones have been met;
however, those marked in yellow were performed in a different way than foreseen when writing the
proposal.

M1 First generation wake detection algorithm validated
M2 Final wake detection algorithm validated
M3 New experiments finished
M4 Analyses completed and optimal controller developed
M5 Final controller algorithm validated

D1 Release of first generation wake detection algorithm
D2 Release of final wake detection algorithm
D3 Documentation of experiments
D4 Report on wake optimization controller

D5 Business case demonstration at AWEA/EWEA exhibitions
D6 Release of wake compensation algorithm

Table 1: List of milestones and deliverables

One unexpected problem was that the wind turbine controller in the DTU wind turbine for the experi-
ments towards M5 and D4 could not be replaced with the control algorithms developed in the project. At
first, we saw this difficulty as a delay, whereas later on it became clear that the validation experiments
could not be performed as planned. We explored an alternative validation experiment, using the wind
turbines at an American test site in Lubbock, Texas. Although the American partners for this work were
keen on the collaboration and tests, these turbines had scheduled repairs and developments during
the possible project time window. In the end, we worked with testing of the DTU turbine as originally
planned. Rather than implementing the developed algorithms into the controller of the turbine, the de-
veloped control settings were tested in supervised on-site experiments. The results from this work,
together with extensive computer simulations allowed us to conclude that the developed algorithm has
strong potential.

The highest risk was considered in conjunction with the work towards D6 and this anticipation turned
out to be true. The original plan was to use so-called Kalman filtering, by which successive readings

3



of wake affected lidar measurements are used to estimate the exact location the wake. Although this
approach is promising, it was too complicated and in October 2018, we had to give it up and focused
instead on a simpler method that can easily implemented in the lidar software.

Concerning D4, the wake optimization controller was presented at the WindEurope 2018 Conference
at the Global Wind Summit and at the WindEurope Conference and Exhibtion in April 2019, whereas
the D5 deliverable was marketed at the largest Wind Energy event in China, “China Wind Power”, in
October 2018.

4



1.5 Project results

This section contains relative detailed information on project methods and results. Dissemination activ-
ities (papers and conferences) are summarized in Appendix A.

1.5.1 Wake Detection

Nacelle mounted lidars can be used for remote sensing the inflow of wind turbines. Numerous param-
eters of the flow can be derived from line-of-sight measurements, namely, wind speed, relative wind
direction, effective rotor speed etc. The estimation of these properties assumes a homogeneous wind
flow, which is valid in flat homogeneous terrain over large time averages, but is violated in heteroge-
neous flow condition, such as wake. In wake scenarios, the yaw misalignment measurements from
the lidar, deviates significantly from the true value, thus detection and subsequently correction of these
measurements is needed. The first step of this project (1) is to identify and quantify the presence of
inflow wake using lidar measurements.

The influence of wake in lidar misalignment measurements is illustrated in 1. In an aligned turbine
in homogeneous flow (left), the wind speed at the different line-of-sights is equal, thus the measured
misalignment is φ = 0. In case of a misaligned turbine (center), the different wind speed at the two line
of sights results in φ > 0. In a wake scenario, the wind speed can be different at the two line of sites,
even if the flow is aligned, resulting in φ > 0. Figure 1, illustrates a sinusoidal pattern of lidar measured
misalignment around the wake sector center.

Figure 1: Left: Homogeneous inflow aligned with the turbine. Center: Homogeneous inflow misaligned
with the turbine. Right Impinging wake on the left part of the wind field [1]

Figure 2: Lidar misalignment as a function of wind direction. Wake sector center at 195o
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Figure 3: Example of two spectra, where the increased width of the blue spectra is induced by wake

The length-scale of turbulence inside the wake is significant smaller than ambient turbulence [6]. The
small scale turbulence contributes to the widening of the Doppler spectrum as experimentally verified
by [7]. Figure 3, illustrates a case where one of the laser beams is measuring inside the wake. The
small scale turbulence results in increased spectra width. We use the second statistical moment, the
spectrum variance, to quantify the wake induced spectra widening. Moreover, the peak of the spectra
shifts to the left, indicating lower wind speed compared to the wake free measurement, which can be
tracked by the first statistical moment (center of gravity).

Summarizing, the presence of wake, can be detected from a continuous wave laser by tracking the
changes in the first and second statistical moment (mean and variance). The line-of-sight turbulence
intensity can be derived by normalizing line-of-sight standard deviation (square root of line-of-sight vari-
ance) with the line-of-sight speed (wind speed). A wake detection algorithm was developed, that tracks
changes in the line-of-sight turbulence intensity and lidar misalignment to detect wake. The algorithm
has the ability to detect both partial and full wake situations. In partial wake cases the algorithm can
determine which part of the rotor is affected by the wake.

The wake algorithm was developed in the following three sites :

• Risø wind turbine test center. This is a flat, low vegetation terrain where the flow experiences a
roughness length change, from water surface to land, in western directions. The experimental
setup consists of two turbines: a Vestas V52 with hub height of 44 meters and 50 meters diameter
and Nordtank 500 kw turbine with hub height of 36 meters and rotor diameter of 41 m. A WindEYE
two beam lidar was mounted on top of Vestas V52 turbine. The distance between the two turbines
is 215, which translates into 5.2 rotor diameters at an angle of 195o. The date come from two
different test periods, between 5th December 2015 and 12th January 2016 and between 29th

March 2016 and 4th May 2016.

• Tjæreborg wind farm in western Denmark. The site consists of flat, low vegetation terrain. The
WindEYE system is mounted on a Vestas V80 turbine. In the vicinity of the test turbine, there are
5 neighboring turbines with diameters ranging from 66 to 80 meters in 3.1 to 7 rotors diameter
distance. The test period spans from 5th November 2014 to 10th March 2015.

• A complex terrain site located in Ireland with high elevation differences and dense vegetation. In
the vicinity of the test turbine, there are two neighboring turbines, with 80 annd 90 meters rotor
diameter, but during the measurements period (11th February to 3rd March), only the wake of the
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larger turbine was captured.

Following the algorithm development, the wake detection is verified in a very complex terrain site in
Nothern Mexico with Vestas V112. The results presented here, come from the three sites used for de-
velopment. Figures 4, 5 and 6, illustrate the data the algorithm flagged as wake. It can be seen that the
algorithm successfully identifies wake in the infow, for both flat and complex terrain, moreover it can also
determine which part of the rotor is affected by the wake. There were very few false detections at the
Irish and Tjæreborg site, more specifically 2.3 % and 1.9 % for the Irish and Tjæreborg site, respectively.
It should be expected that the false detection will be reduced with finer tuning of the algorithm. Figures
7, 25 illustrate the line-of-sight turbulence intensity distribution for Tjæreborg and Irish site and how the
measured turbulence intensity increases as the beams scan the wake sectors. It worth mentioning, for
the Irish site, that turbulence induced by the forest, southeast of the test turbine, is not detected as wake
by the algorithm.
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Figure 4: Wake Detection results for Risø test site

Figure 5: Wake Detection results for Tjæreborg test site
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Figure 6: Wake Detection results for Irish test site

Figure 7: Line-of-sight Turbulence Intensity distribution for Tjæreborg test site
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Figure 8: Line-of-sight Turbulence Intensity distribution for Irish test site

1.5.2 Compensation for apparent wind direction change in wake situations

Once a wake has been detected, different solutions for calculating the true wind directions were ex-
plored.

1. Switch to nacelle anemometer. By this approach, the wake detection algorithm described above
is simply used to determine when the Windar lidar does not provide accurate wind directions.

2. Assume equal wind direction offset as during non-wake situations. By this approach, the knowl-
edge gained from use of the Windar lidar is used to enhance the performance during wake-
affected inflow, but similar to approach 1, the strategy depends on the nacelle anemometer.

3. Use empirical data to estimate the true wind direction. By this approach, we assume that we
can determine the wind direction by the lidar data alone, using a very simple algorithm. Although
the first results were promising, this approach showed to be site dependent and was therefore
abandoned.

4. Use of Kalman filtering to deduce true wind direction. By this approach the consecutive readings
of wake detection are used to find the true wind direction via an advanced filter. This approach is
described in more detail below and in Appendix B.

Introduction to Kalman filtering

The ability possessed by modern wind turbines to actively control the turbine yaw angle offers a means
of maintain turbine alignment with the dominant wind direction, thus increasing the power capture [8].
Typically, a yaw control system employs the wind direction measurements from a wind vane that are
mounted upon the rear of the nacelle. It is well-known that such yaw misalignment measurements
are subject to considerable uncertainties caused by numerous sources such as the rotor-induced flow

10



Figure 9: Line-of-sight measurements of LIDAR from a downstream turbine in a wake free and partial
wake situation.

distortion [9]. Thus, this has sparked recent interest in improving yaw misalignment using real-time
advance measurement technology such as light detection and ranging (LIDAR) systems.

The LIDAR systems provide a sensing of the instantaneous wind speed along a laser beam based
upon the Doppler shift effect between the emitted light and back scatter from aerosols in the air. The
yaw error could then be computed using measurements from two or more LIDAR beams under the
assumption of the homogeneous flow on each height and no vertical and horizontal wind components
[10]. These assumptions are reasonable for a terrain that is flat and homogeneous where the ensemble
averaged wind speed used to calculate the yaw error depends on the height above the terrain only. In
[11], yaw misalignment of the turbine based upon spinner LIDAR measurement was compared against
both a nearby reference met mast and a wind vane on the turbine. Later, studies by numerous sub-
sequent authors [12] and [8] also demonstrated that a spinner-based LIDAR could accurately measure
the yaw misalignment using simulated and experimental data. Studies by [13] investigated the use of
LIDAR measurements on improving the yaw alignment based on simulation modelling. Furthermore,
in [14], a full-field test was conducted to show the improvement in the power capture by reducing yaw
misalignment based on the LIDAR. In addition, studies by [10] employed the yaw misalignment from a
scanning LIDAR to reconstruct the wind veer.

Nonetheless, these studies were based upon a single wind turbine. In a wind farm, the wake is
generated by upstream turbines that significantly disturb the downstream wind field properties in com-
parison to the ambient wind field. Such a wake is typically characterised by a decrease in the mean
wind speed (known as the wake deficit) and increase in the turbulence intensity. The wake characteris-
tics violate the assumption of the homogeneous flow as the mean wind speeds in the wake are different
to the ambient averaged wind speed. For example, one of the two LIDAR beams is in the wake-free
flow regime and the other is in wake affected flow regime. The difference between the two recordings
might be misinterpreted as an additional turbine yaw error. To reveal the true yaw misalignment from
the LIDAR measurements, it is crucial that the homogeneity of the wind flow remains valid which can
be potentially achieved by isolating the wake contributions from the ambient wind field. Therefore, this
work proposes a wake tracking algorithm that can estimate the wake location and characteristics and by
subtracting the resultant wake deficits from the ambient wind field, the true yaw misalignment can then
be recovered. Specifically, such a wake tracking algorithm is developed based on the dynamic wake
meandering model (DWM) and extended Kalman filtering approach. The dynamic wake meandering
approach characterises the wake as a passive tracer driven by the large-scale turbulence structures in
the atmospheric boundary layer [15, 16] and based on the generic wake information, the Kalman filter
is employed to estimate the dynamic movement of the wake structure from the LIDAR measurements.
The capability of tracking the wake is important from the industrial perspective, since not only the true
yaw misalignment can be recovered, leading to an increase in power capture, but also a cost-effective
LIDAR is on a par with a spinner LIDAR in a way that the wake characteristics and location can be
estimated by exploiting the meandering nature of the wake.

Background and Motivating example

Figure 9 depicts the line-of-sight measurements of the LIDAR from a downstream turbine in a wake and
partial wake situation. For brevity, this work only considers a two-dimensional situation, where the wind
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flow, wake and LIDAR measurement are at a horizontal plane. The proposed method is self-explanatory
to a three dimension situation. In Figure 9, two line-of-sight LIDAR measurements are denoted as U+

los

and U−los.
A brief introduction of typical yaw error calculation in a wake free situation is presented. Some

assumptions are necessary for the problem.

Assumption 1 The lateral and vertical wind components are negligible comparing to the longitudinal
component.

Based on the Assumption 1, the instantaneous wind speeds in the line of sight (los) of the laser beams
Ulos ∈ R and the longitudinal wind speed U ∈ R can be expressed in a relationship via a transformation
as follows [10, 17]:

U(x, t) = Ū(x) + ut(x, t) =
Ulos(x, t)

cos(θp + θy(x, t)) cos θt
, (1)

where Ū , ut ∈ R denote the temporally averaged longitudinal wind speed and longitudinal turbulence
component and x ∈ R3, t ∈ R are a vector representing a point in a three-dimensional space and the
time. The LIDAR laser beam pan and tilt angles are denoted by θp, θt ∈ R whilst θy ∈ R is the pan-wise
turbine yaw error.

The ensemble averaged of (1) is defined as follows:

Ū(x) =
Ūlos(x)

cos(θp + θy) cos θt
. (2)

Considering the Cartesian co-ordinates x is converted into polar co-ordinates (r, θp, θt), where r is
the radial distance, it is assumed that two fixed identical LIDAR beams are aiming at the same height
(same tilt angle θt) with a pair of fixed pan angles (θp,−θp) and their line-of-sight ensemble averaged
wind measurements are denoted as Ū+

los(θt) := Ū+
los(r, θp, θt) and Ū−los(θt) := Ū+

los(r,−θp, θt), defined as
follows:

Ū+
los(θt) = Ū+(θt) cos(θp + θy(θt)) cos(θt), (3a)

Ū−los(θt) = Ū−(θt) cos(−θp + θy(θt)) cos(θt). (3b)

Assumption 2 The terrain of interest is assumed to be relatively flat, where the wind flow is homoge-
neous at given altitude and the flow is described by a relatively low Reynolds number.

Based on Assumption 2, on a flat and homogeneous terrain, the ensemble averaged mean wind
speed is only dependent on the height, thus, Ū+(θt) = Ū−(θt) = Ū(θt). By rearranging (3), the turbine
yaw error angle can be determined by the following expression [10]:

θy(θt) = arctan

(
Ū−los(θt)− Ū+

los(θt)

Ū−los(θt) + Ū+
los(θt)

cot θp

)
(4)

Motivating example

A downstream turbine experiencing a partial wake situation is demonstrated in the right of Figure 9. It is
clearly shown that one of the LIDAR measurements is in the ambient wind flow (illustrated by the colour
yellow) whilst the other is in the wake (illustrated by the colour blue), resulting in deficits in wind speed.
Such a deficit in the line-of-sight wind measurement could contribute additional error to the turbine yaw
misalignment based on (4). In this partial wake situation, the line-of-sight ensemble averaged wind
measurements (3) are modified where the ensemble averaged wind speed at the measurement point
becomes Ū+(θt) = Ū(θt) + Ū+

w (θt), Ū
−(θt) = Ū(θt) + Ū−w (θt), defined as follows:

Ū+
los,wake(θt) = (Ū(θt) + Ū+

w (θt)) cos(θp + θy(θt)) cos(θt), (5a)

Ū−los,wake(θt) = (Ū(θt) + Ū−w (θt)) cos(−θp + θy(θt)) cos(θt), (5b)
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Figure 10: Problem schematic.

where Ū+
w , Ū

−
w ∈ R denote the mean wake deficits at the measurement point. This work aims to track

the wake centre location and then the mean wake deficits at the measurement points Ū+
w (θt), Ū

−
w (θt)

are estimated. Once the mean wake deficits are known and by subtracting them in (5), the line-of-sight
wind measurements without the wake influence are defined as follows:

Ū+
los,nowake(θt) = Ū(θt) cos(θp + θy(θt)) cos(θt), (6a)

Ū−los,nowake(θt) = Ū(θt) cos(−θp + θy(θt)) cos(θt), (6b)

Thus, with Ū+
los,nowake, Ū

−
los,nowake, the correct yaw error angle/misalignment can be recovered by (4).

Problem description and methodology
The design of the estimator is depicted in Figure 10. In the left of the figure, it is a snapshot of a

turbine located in the downstream and subjected to a partial wake generated from upstream turbines.
The wake (decrease in the wind speed) is denoted by the blue colour whereas the ambient wind speed
with turbulence is denoted by the yellow colour. The LIDAR provides two measurements of the wind
speed, represented by the red dots. One of the measurements is clearly in the wake and another is in
ambient wind flow. This could contribute to an additional yaw error as one of the LIDAR measurements
is corrupted by the wake. The cross and dash line denotes the estimated location of the wake centre
from the estimator and the mean wake deficit Gaussian profile.

In the right of the figure, it is the proposed estimator in the work. Let xk denotes the true state
(location of the wake centre and other wake information) whilst x̂k represent their estimates. The key role
of the estimator is to ensure the state estimate is as close as possible to the true state. The estimator
predicts the current estimated wake centre x̂k by employing the dynamic wake meandering model f
and the previous state estimate x̂k−1. Based upon the current estimated wake centre x̂k, the estimated
wind speed at the LIDAR measurement point ŷk is computed by using the wake characteristics and
sensor dynamics h. The estimated wind speed ŷk is then subtracted from the actual measurement yk to
form an error signal ek. This error is then multiplied with the filter gain Lk to introduce a correction term
that is used in the dynamic wake meandering model in an attempt to minimise the error signals in the
subsequent iterations. Notice that the Kalman filter is a recursive filter and the filter gain is computed that
minimises the mean square error E(xk − x̂k)(xk − x̂k)T for given measurements yk, where E denotes
the expectation of sequence and (·)T is the transpose of a vector.

Dynamic wake meandering model and mean wake deficit profile
This section presents the wake models that used in the estimator. The dynamic wake meandering

model is based upon a fundamental conjecture that the transport of wakes in the atmospheric boundary
layer can be modeled as a passive tracer driven by the large-scale turbulence structures. The mean-
dering process is then described by a stochastic transport media as well as of a suitable definition of
the cut-off frequency of the large-scale turbulence structures.

The wake deficit dynamics in the lateral direction can be modelled as follows:

ẏg = vc, (7a)

where the yg ∈ R denotes the lateral location of the wake centre, ˙(·) := d(·)
dt is the time-derivative and

vc ∈ R represented the transversal wake transport velocity. This transversal wake transport velocity vc
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is governed by a stochastic/coloured noise and its dynamics is similar to a low-pass filter, defined as
follows:

v̇c = −ωcvc + ωcn, (7b)

where n ∈ R denotes the white noise and the cut-off frequency fc = ωc
2π ∈ R is determined by the

ambient mean wind speed Ū ∈ R in the longitudinal direction and wake deficit diameter Dw ∈ R:

fc =
Ū

2Dw
(7c)

Next, the mean wake deficit profile is presented where such a model helps the estimator to identify
the wake centre based on the wind speed measurement. From empirical studies [15], the downstream
mean wake deficit profiles corresponding to an ambient mean wind speed can be characterised as a
Gaussian function g(yg, µ, σ) : R × R × R → R in a far wake situation. The mean wake deficit can be
expressed mathematically as follows:

Ūw(yg, µ, σ, Ūpeak) = Ūpeak
1

σ
√

2π
e−

1
2 (
yg−µ
σ )2 (8)

where Ūw, Ūpeak ∈ R denotes the wake deficit and its peak relative to the mean ambient wind speed Ū
and µ, σ ∈ R are the mean of the wake deficit and standard deviation of the Gaussian profile.

Assumption 3 The mean ambient wind speed Ū at given attitude is known, either by estimation or
detected by one LIDAR beam in wake free situation. The parameters for the mean wake deficit pro-
files Ūpeak, µ, σ,Dw are assumed to be estimated real-time based on system identification technique or
known in advance.

Design of estimator The estimator design is based on a celebrated Kalman filtering approach [18].
Kalman filter provides the optimal state estimates of a linear systems by minimising the mean square
state error or state error covariance matrix Pk := E[(xk − x̂k)(xk − x̂k)T ]. Given the fact that the
models discussed in Section 1.5.2 is nonlinear, an extended Kalman filter (EKF) is employed to estimate
the states of the system, namely the wake information and centre location. The EKF is similar to
Kalman filter except that it computes the estimates based on the nonlinear equations and determines
the state co-variance matrix P by linearising around the current state estimate. Notice that the model in
Section 1.5.2 is in continuous-time and it is more convenient if the model can be expressed in discrete-
time thus a discrete-time EKF can be employed. The notation f, g : R → R are the discrete-time
representations of the dynamic wake deficit meandering model (7) and mean wake deficit Gaussian
model (8). The state xk of the system at sample time k consists of the lateral location of the wake
centre, transversal wake transport velocity, defined as follows:

xk := [ygk, v
c
k]T , (9)

and the measurement to the estimator consists the wake deficits, that is calculated based on (5) with
two LIDAR measurements, defined as follows:

yk := [Ū+
w , Ū

−
w ]T . (10)

Typically, an EKF consists of two steps, prediction and measurement update. Notice that super-
scripts x+k := xk|k, x

−
k := xk|k−1 are used to determine the variable x at sample time k given observa-

tions up to and including sample time k for x+k or k − 1 for x−k . The notation x+k , x
−
k are also known as

the a posteriori and a priori state estimate.
In the prediction step, the EKF predicts the estimate and error co-variance based on the system

models and information from the previous step. The predicted/a priori estimates for the state x̂−k and
error co-variance matrix P−k can be calculated as follows:

x̂−k = f(x̂+k−1), (11a)

P−k = FkP
+
k−1F

T
k +Qk, (11b)

Fk : =
∂f(x+k−1)

∂x
. (11c)

14



where the x̂+k−1 and P+
k−1 are the updated/a posteriori state estimate and co-variance estimate from

the previous step, whilst Qk is the noise co-variance matrices to the dynamic model, chosen by the
designer.

Next, in the measurement update step, the prediction is corrected by exploiting the measurement,
yielding the updated estimates x̂+k and error co-variance P+

k , defined as follows:

ŷk = h(x̂−k ) (12a)

x̂+k = x̂−k + Lk(yk − ŷk), (12b)

P+
k = (I − LkHk)P−k , (12c)

Hk : =
∂h(x−k )

∂x
(12d)

where Lk is the filter gain. The filter gain is computed as follows:

Lk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1. (13)

where Rk is the noise co-variance matrices to the measurements that it is also a parameter tuned by the
designers. Subsequently, the estimate of system states (wake information and centre location) x̂+k and
the mean wake deficits ŷk := [Ū+

w , Ū
−
w ]T are the best estimates for measurements up to and including

sample time k. At the next sample time, the estimator repeats the prediction and measurement update
steps.

In addition, some parameters such as the mean ambient wind speed Ū , mean peak wake deficit
Ūpeak, µ, σ and Dw does not hold any dynamics, thus, estimation of those parameters is achieved
by some system identification techniques or parameter identification methods such as immersion and
invariance-based nonlinear estimator design [19]. The summary of the estimator design is shown in
Figure 11.

Conclusions and future work

Given the limited time and resources, this task has not been fulfilled. In the future, the plan is as follows:

1. Numerical simulation in HAWC2 or PyWake with no ambient turbulence and only wake me-
andering turbulence, assuming some parameters about the mean wake deficit profile such as
Ūpeak, µ, σ,Dw and the mean ambient wind speed are known.

2. Similar numerical studies with ambient turbulence.

3. Numerical studies with ambient and wake meandering turbulence. The parameters about the
mean wake deficit profile are estimated by system identification method.

4. Studies using Full filed measurement. A scanning LIDAR can provide a downstream wake situ-
ation in a horizontal plane, similar to the right of Figure 9. The studies could choose two points
to represent the cost-effective fixed beam LIDAR. Based on these two points, we can verify if the
estimator can estimate the wake centre location correctly.
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Initialisation
for models

θy, Ū , Ūpeak, µ, σ,Dw

Initialisation
for estimator
x̂k, Pk, Qk, Rk

Ū+
w , Ū

−
w in (5)

obtained based
on the LIDAR
measurement.

Ū , Ūpeak, µ, σ,Dw are
updated slowly
based on the

measurements.

Estimator (11)
and (12).

The estimate
ŷgk, Ū

+
w , Ū

−
w obtained

Ū+
los,nowake, Ū

−
los,nowake

in (6) are recovered.

The yaw misalign-
ment θy is updated

based on (4).

Next step

Figure 11: Flow of the estimation algorithm
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Turbine optimization in wake-affected inflow

Motivation In a wind farm, the interaction of nearby wind turbines affects the flow, thus the performance
of the downstream turbines. Power and loads are influenced by this phenomena where, generally, higher
fatigue loads are observed when wake is present. An example can be observed in figure 12 where the
blade flapwise and tower top fore-aft moment damage equivalent load (DEL) are plot as function of wind
direction.
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Figure 12: Blade Flapwise Moment and Tower Top Fore Aft DEL for upstream wake at 3D position as
function of wind direction for 12 m/s simulation and 5% turbulence intensity

The simulations presented in figure 12 corresponds to a two turbine simulation with a spacing of 3D
in the main wind direction and aligned in the transverse direction. Thus, the cases where wind direc-
tion is 0, corresponds to full wake cases while for wind turbine misalignment’s, i.e. -40 degrees, the
upstream wake will not affect the downstream turbine. It is possible then to refer to those cases as a
free stream case or non-waked case.

It is possible to observe an increase of the loading when wake is present for both cases in figure 12.
For the blade flapwise DEL, left panel on figure 12 an increase of 50% can be observed if a partial wake
case (wind direction 10 degrees) is compared to the free stream case. Higher increase, around 80%,
are observed in the tower top fore-aft DEL, right panel on figure 12, for the partial wake cases (wind
direction ± 10 degrees) compared to the free stream case.

The main results are summarize in the following sections. 1.5.3 presents the HAWC2 vs experiments
comparison where the fatigue load alleviation predicted by HAWC2 is compared with measured data.
Then 1.5.6 presents the simulation set-up for the wake scenarios, the yawing and de-rating strategies
for load alleviation. Finally, 1.5.7 presents fatigue load alleviation for both presented strategies without
compromising power. On the other hand, in 1.5.7 power is compromised to further decrease the wake
impact on the loads.

1.5.3 Validation Yaw Strategy for Load alleviation

Load reduction by yawing a wind turbine has been previously been demonstrated by [20] where the
potential load reduction on a isolated machine is presented. The work has been extended in this project
where the influence of the wake and yaw misalignment for load reduction was studied [3]. The work
presented in [3] only present cases where the yaw strategies are defined constrained to maximum
power production.
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1.5.4 Experiments set-up

The experiments were carried in the V52 at Risø campus between August and December 2018 where
the wind turbine was intentionally misaligned while recording loads on the main wind turbine compo-
nents. The experiment was conducted by provoking an offset on the yaw angle following a sequence of
positive to negative angle passing throw 0. In each of the yaw misalignment positions, the wind turbine
was operation for thirty minutes.

The idea of this sequence is to enable a comparison of the relative increase/decrease of fatigue assum-
ing similar inflow conditions during one complete yawing sequence (around 150 minutes considering
the transients from one misalignment to another). However, when post-processing the results, it was
found that the relative change on fatigue loading was smeared out with the variation of atmospheric
conditions during the complete yawing sequence.
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Figure 13: Example on V52 imposed yawing sequence during 16 of August 2018

1.5.5 Validation

The Damage Equivalent Load (DEL) for the experiments was obtained in order to quantify the relative
fatigue difference with the aligned case. The data was binned and classified as aligned when the yaw
misalignment was comprehended between ± 5 degrees, obtaining this reference value based on histor-
ical data of the turbine during normal operation, and positive or negative misalignment when the binned
misalignment is outside the normal operation bound. The reference coordinate system is the same as
presented in figure 17. Figure 15 presents the DEL for the aligned and misaligned yaw cases.

The misaligned experiments, following a yawing sequence, was performed to ensure similar inflow con-
ditions which objective was to reduce the inflow variability during the experiments. However, as it can
be seen in figure 15, no clear conclusion was found using this approach. From simulations, it is known
that in the below rated region, wind speeds lower than 12 m/s, positive yaw misalignment lead to an
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Figure 14: DEL Classification V52 yaw experiments on aligned, positive and negative misalignment

increase of fatigue loading while negative to a decrease. It was not possible to observe this trend in
figure 15.

The lack of a large data-set presenting large yaw misalignment combined with the uncertainty of the
atmospheric conditions, the load alleviation comparison is always done assuming the same flow con-
ditions, lead to post-process the data in a different manner. Two different approaches were tested on
simulated data before its application to measurements. The first approach uses a high-pass filter to
remove fluctuations on the wind speed signal. The second approach uses a band-pass filter around the
1P frequency. The 1P frequency corresponds to the rotor speed value of each analyzed time-series.
Both methods decrease the uncertainty if compared with the DEL method. An example is shown in
figure 15.
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Figure 15: Simulation Example on Blade Flapwise Moment Filtering using High-pass and Band-pass at
1P reference

Figure 15 presents the simulation time-series of the blade flapwise load for an aligned case (red) and
misalignment of ± 30 degrees (black and blue) on the top left panel. The corresponding DEL, where
a decrease in value is observed for the negative misaligned case, is shown in the top right panel.
Correspondingly, the time-series results of the two proposed methods are shown in the figure with its
corresponding alleviation analysis. In this case, signal’s variance is used to determine the load allevia-
tion.

It is possible to observe that the trends between the original post-process signal into DEL (top right
panel) are the same than the two proposed approaches (middle and bottom right panel). It was decided
to post-process the data using the third approach, 1P band-pass filter, since the periodic loading on the
1P is where the yaw misalignment has a higher influence. Based on the measured yaw misalignment,
wind speed, shear and turbulence intensity for the free stream sector at Risø campus, HAWC2 simula-
tions has been performed to compare with measurements. Figure 16 presents the variance of the 1P
filtered data for simulations (top) and measurements (bottom).

Figure 16 shows a good correlation between simulations and measurements post-processed data
where the trends and misalignment outliers match. The increased loading can be easily identified,
for example around 11 m/s where negative misalignment or for 18-20 m/s where positive misalignment
produced higher loading. The load alleviation is a bit more difficult to observe but some cases around
10-12 m/s and 14-16 indicates the potential of the strategy.

1.5.6 Simulation Set-up

The simulated wind turbine is a collective pitch regulated, variable speed turbine with a rotor diameter
of 90 m and a rated power of 2.3 MW at 12 m/s. The wind turbine type and size matches the average
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Figure 16: Comparison simulation and measurements variance of Filtered 1P Data on the V52 yaw
experiments

machine that Windar Photonics is targeting for the load alleviation add-ons. HAWC2, the inhouse aero-
servo-elastic code of DTU Wind Energy, has been used to generate the wind fields and obtain power
and loading of the main wind turbine components. Two turbines are used in the setup: the first turbine is
used to generate the wake, while the power production and loads are computed on the second turbine.
The unsteady inflow conditions are defined on the upstream turbine. Thus, the downstream turbine feels
a disturbance of the original inflow due to the wake. It is important to remark that the wake downstream
advection direction is not changed, thus, wake steering is not part of this analysis.

The wind turbine spacing as well as the yaw angle of the downstream wind turbine are varied to char-
acterize the effect of yawing in a wake situation. Six ten-minutes simulations with different stochastic
realizations (ie. based on different random seeds) per case are used to improve the statistical signifi-
cance of the results. The investigated scenarios include mean wind speeds ranging from 4 m/s to 25
m/s.

1.5.7 Derated Control Strategy

Proportional derated control is performed at below-rated wind speeds. Proportional derated control
refers to changing the power output of the turbine to a proportion of the available power. Two imple-
mentations of proportional derating are used to investigate load alleviation as shown in Figure 18. The
first method is to alter the minimum blade pitch angle while maintaining the same tip speed ratio. The
second method is to alter both the minimum pitch angle and the tip speed ratio using torque control.
Both strategies are implemented in at 90% and 80% derating HAWC2 by means of look-up tables.
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Figure 17: Setup description: left: two turbines configuration; right: turbine yaw convention.

Figure 18: Derating percentage versus tip speed ratio for varying pitch angles. The two implementations
of proportional derating are pitch offset (Black dashed line) and pitch offset with torque control (red
dashed line).

Optimization with constrained power production

This strategy is only relevant for above rated conditions since yaw misalignment in the below rated con-
ditions will lead to a reduction in power production. The results are dependent on the inflow observed
by the downstream turbine which depend on the atmospheric turbulence intensity and downstream po-
sition relatively to the closest wind turbine.
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The yaw strategies presented in figure 19 are found to minimize the blade flapwise fatigue loading.
In principle, any other loading could be used to define the yaw strategy but, during the project, it was
found that the loading with higher potential was the blade flapwise.

Figure 19: Left: Yaw strategy for same atmospheric conditions (ti = 15%) but different wake upstream
positions. Right: Yaw strategy for same upstream wake position (full wake 3D) using different atmo-
spheric turbulence intensities

Low turbulence intensity sites have a larger potential for load alleviation. For example, a 35 % load
reduction in the 1 Hz flapwise DEL is observed for high wind speeds at 3D full wake at 5 % turbulence
intensity. The higher the turbulence intensity is, the smaller the potential load reduction is. Turbine and
site specific reductions are found dependent on the park layout, machine and wind distribution.

The loading on other relevant channels has been assessed presenting small differences compared
to the reference (aligned) case. Figure 20 presents the lifetime fatigue equivalent load for the blade
flapwise moment (black), blade edgewise moment (blue), tower top for-aft moment (red) and tower top
side-side (green). The simulation shows that it is possible to reduce the blade flapwise fatigue loading
with minor negative impact on other channels. On the presented results, tower for-aft lifetime DEL was
also decreased while blade edgewise and tower side-side were slightly increase (less than 0.1%).

1.5.8 Optimization based on load alleviation

This strategy compromises power in benefit of reducing loading. In figure 12, it is possible to observe
the load increment when there is presence of wake. This chapter, presents various examples to illus-
trate this strategies.

- both derating strategies (pitch, pitch + torque) are comparable. - yaw control is better in forest cases
for both blade and shaft loads - proportional derating is generally better in offshore cases for both blade
and shaft loads.

Most of the simulations in this project were performed on a 2.3MW machine with a diameter 90 me-
ters. The effects on a larger, more modern, wind turbines has also been evaluated in the project. The
DTU 10 MW reference wind turbine, with a rotor diameter of 178m, has been simulated to evaluate the
potential load alleviation on bigger turbines.

Figure 23 shows the normalized (using aligned case) blade flapwside DEL for two turbines: DTU 2.3MW
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Figure 20: Lifetime DEL using the optimal yaw controller for a non-wake case (left) and a waked case
(right) at TI of 15%, Weibull parameter A=8 m/s and k=2

(a) Offshore case (b) Forest case

Figure 21: Blade flapwise loads

(left) and DTU 10MW (right). It is possible to observe the difference in the load range, towards high wind
speed angles, where the biggest turbine presents a higher potential for load alleviation. The geometric
properties and aerodynamic design influences the potential of load reduction by intentional misalign-
ment but, as larger is the rotor, larger is the load alleviation.

1.6 Utilization of project results

The outcome of this project is provided in the retrofit market and to co-development projects with turbine
manufacturers.

For the retrofit market, the outcome of this project has been implemented at the WindTimizer feature
of the 2-beam WindEYE lidar. The WindTIMIZER is Windar Photonics solution for retrofit lidar assisted
yaw turbine control.

WindTIMIZER feeds the controller (PLC) with lidar corrected relative wind direction measurements.
Figure 24 illustrates WindTIMIZER connection to the turbine controller. The WindTimizer calculates
long-term statistics of the correlation between the sensors and the lidar relative wind direction, thus
in case of low lidar availability, the yaw misalignment is still corrected with offset added to the sensor
measurements.
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(a) Offshore case (b) Forest case

Figure 22: Main shaft loads

Figure 23: Comparison DTU 2.3 and 10MW normalized DEL blade flapwise loads using atmospheric
turbulence intensity 15% and shear 0.2

The lidar misalignment measurements are biased at a wake situation, but the wake detection algorithm
can accurately identify these cases. In wake-affected inflow the WindTIMIZER feeds the PLC with cor-
rected yaw measurements from the turbine sensors, similar to what happens at low availability cases.
This approach assumes that the turbine sensors relative direction is not affected by wake. We tested
this assumption in numerous WindEYE installations around the globe, using SCADA data provided by
the turbine owners. It can be verified that the traditional turbine instrumentation, mounted behind the
rotor, is not affected by wake inflow in terms of yaw misalignment measurements. Figure 24 illustrates
the measured misalignment by the primary sensor, the secondary sensor and WindEYE lidar in a flat
terrain site in Canada. The neighboring turbine is located 220o southwest of the test turbine and affects
only lidar misalignment measurements.

A new version of the WindTimizer feature has been developed as an outcome of this project. The wake
detection algorithm feeds the WindTimizer with the wake information. When wake is detected, Wind-
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Timizer uses the corrected turbine sensor measurements for misalignment information. Based on the
wind speed, the wake information and the selected yaw strategy, WindTimizer induces misalignment to
the turbine to alleviate loads, by introducing offsets to the turbine sensor measurements.
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Figure 24: WindTIMIZER connection to the turbine controller

Figure 25: Misalignment as a function of nacelle position for a test turbine in Canada. The wake center
is at 220o

The outcomes of this project, are utilized in direct lidar integration projects with turbine manufacturers,
such as the ”Wake Project” with United Power Technology Co.,Ltd. In this project, the lidar feeds the
wake detection algorithm output directly to the turbine controller. In the controller level, a module that
implements the wake yaw strategy is developed to alleviate loads in wake scenarios.

Summarizing, the work of this project, makes load alleviation in wake scenarios available for turbine
manufacturers and the retrofit market, enhancing the optimization capabilities of the nacelle mounted
lidars. Moving forward these outcomes can be impemented in a complete wind farm stategy that in-
creases energy yield and decreases turbine loads.
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1.7 Project conclusion and perspective

The results we have achieved in the wake project have major impact on our business approach. Through-
out our feedback in China Wind Power and Husum Wind, the need for solving wake issues within the
wind industry has been highly prioritized, and we have been able to impact some of the decision makers
in using LiDAR technology for wake detection.

The recent years there has been a lot of focus within in the wind industry to focus on optimiza-
tion of individual wind turbines, but more requests are coming up for complete wind farm control and
optimization, and here the wake detection project has been important for Windar.

By participating in the wake project Windar has been able to distinguish itself from other LiDAR
manufacturers and are now able to offer another essential feature to the LiDAR product.

There shall be no doubt that Windar has been positively surprised about the outcome of the wake
project, and to such extend that we have modified our business plan and increased the commercial
focus on wake even further.

In a more general level, the technology developed within the frame of this project will also encourage
the current energy policy of changing towards renewable sources of energy. Wake detection is an
important step for reducing loads on wind turbines. Reduced loads on wind turbines lead to both lower
maintenance and the possibility of a slimmer and less expensive turbine design. These factors, in turn,
contribute to lowering the cost of wind energy.

We have identified the market need for wake detection and for wake control, and have seen the
major market potential the wake scenario has. Almost all wind farms globally have to some extend
wake issues, and most of the wind farm / wind turbine manufacturers have so far just accepted the
potential power loss by not being able to handle these wake scenarios, but with our ability to measure
and potentially to control the wake, we are all of the sudden able to contribute to a new potential increase
not only for the wind turbine manufacturers, but also for the IPP (Independent power producers).

The next step for Windar will be to establish a full scale demonstration projects together with a wind
turbine manufacturer and an IPP, and document the full scale benefit it will bring to being able to control
and adapt to wake situations in the inflow of the turbine.
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B: Generic structure of wake deficits and wake generated turbulence profiles
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