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Quantification of Wave Model Uncertainties Used for Probabilistic Reliability
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Wave models used for site assessments are subjected to model uncertainties, which need to be quantified when using wave
model results for probabilistic reliability assessments. This paper focuses on determination of wave model uncertainties.
Four different wave models are considered, and validation data are collected from published scientific research. The bias and
the root-mean-square error, as well as the scatter index, are considered for the significant wave height as well as the mean
zero-crossing wave period. Based on an illustrative generic example, this paper presents how the quantified uncertainties
can be implemented in probabilistic reliability assessments.

INTRODUCTION

Before wave energy converters (WECs) can be installed, a site
assessment needs to be performed in order to characterize the
environmental conditions for a particular location for WECs. The
site assessment should ascertain the spatial and temporal variation
of the wave resources (metocean environment), including their
uncertainties as well as the bathymetry of the location. The site
assessment makes it possible to find the cost-optimized location
for the device. In this context, cost optimization means maximiz-
ing the benefit. The benefit is influenced by the environmental
conditions as well as the location itself. The environmental con-
ditions define the production rate of electricity but also the loads
onto the structure, and the location influences the accessibility of
the device as well as the cost of the mooring system. Further-
more, potential interference between multiple converters should
be identified by the site assessment.

Measurement data from buoys will provide only point measure-
ments, whereas simulated data enable coverage of the whole area
of a potentially exploitable site for WECs. Furthermore, obtaining
measured wave data from buoys is time-consuming and costly.
Therefore, so-called wave models (e.g., SWAN, WAM, WAVE-
WATCH III, and MIKE21 SW) are often used to simulate wave
conditions in a certain domain and are popular for site assess-
ments of potential wave energy device locations (EquiMar, 2010).

The simulated results from wave models need to be validated
by using measured wave data from a point within the considered
domain in order to assess their accuracy. The output from wave
models often contains significant wave height and wave period
(peak or mean zero-crossing wave period) data. Significant wave
height, HS , and peak wave period, TP , distributions are often taken
to assess site-specific extreme and fatigue wave loads onto a cer-
tain WEC structure based on, e.g., wave elevation time series of a
certain wave state given by HS and TP . From the structural design
of the device, the structural reliability can be estimated.
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When probabilistic reliability assessments are used, the uncer-
tainties related to data sets from wave models need to be quan-
tified. The purpose of this paper is to quantify the uncertain-
ties related to wave models based on published validation results.
These uncertainties can be used for wave simulations where no
validation is available. Furthermore, uncertainties should be deter-
mined when structural reliability assessments of WECs are per-
formed and the environmental data are simulated by different
wave models.

This paper first gives a short introduction of the wave mod-
els used, how their accuracy is defined, and the potential uncer-
tainty sources of wave models as well as a short introduction of
probabilistic reliability assessments. In the next section, valida-
tion data from published work and publicly available validation
data are compared, and uncertainties related to wave models are
estimated. Furthermore, a generic illustrative example using the
Wavestar WEC shows how the wave model uncertainties can be
implemented in probabilistic reliability assessments.

BACKGROUND INFORMATION

Definition of Wave States

Wave states are often defined using the significant wave height
HS and peak period TP or the mean zero-crossing wave period TZ .
The significant wave height describes (in the time domain) the
mean wave height of the highest third of the waves. The mean
zero-crossing wave period is the mean value of all considered
waves. The peak period, which can be extracted from the spec-
trum, indicates the wave period with its highest energy. These val-
ues might be measured by a buoy and can be assumed to describe
wave conditions with considered time frames between 20 minutes
and 6 hours, where the wave state can be assumed to be station-
ary (DNV, 2010).

For load calculations (extreme and fatigue), time series of wave
elevations from the wave state parameters HS , TP/TZ can be
derived by using a certain spectrum. For North Sea applications,
the JONSWAP spectrum can be taken. Uncertainties related to
the spectrum given a certain wave state, as well as the statistical
uncertainty based on different considered time series lengths for
HS and TP/TZ estimations, are not considered here. Information
about statistical uncertainties related to wave states can be found
in Ambühl et al. (2013).
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Simulation Tools for Wave State Simulations

Currently, potential wave energy device locations are often in
shallow water and nearshore in order to have high accessibil-
ity and low mooring costs. Wave models can be used to trans-
form data from well-described deepsea regions to shallow-water
regions. These models take into account the local bathymetry and
the coastal topography as well as wind and current data. When
the considered area for simulation only includes nearshore loca-
tions, the wave state data from a buoy can be used as an input
parameter.

There are different simulation tools available for simulating
wave states at a specific location. Currently, the industry and the
scientific community use the third generation of wave models,
which describe all wave evolution processes based on physical
background, instead of arbitrary models. Popular spectral wave
models used by the industry and in research are SWAN (SWAN
Team, 2013), WAVEWATCH III (Tolman, 2009), MIKE21 SW
(DHI, 2013), and WAM (WAMDI Group, 1988). The spectral
wave models model processes like wind-generated waves, non-
linear interactions, white-capping (dissipation of energy due to
breaking of waves in deeper sea), bottom friction, shallow-water
depth-induced breaking, advection (reflecting the transport of,
e.g., heat and salinity), refraction, and shoaling in coastal areas.

Most simulation tools make it possible to use irregular and
unstructured grid sizes where the grid can be refined in coastal
areas. The geographical simulation domain can cover, e.g., the
North Atlantic or the North Sea, but wave models can also be used
to estimate wave characteristics in smaller ranges like nearshore
regions (coastal areas). The wave models can be used for hind-
cast simulations where, e.g., buoy measurement data are used for
the input data at the open sea boundary. This hindcast simulation
can then be used to characterize the wave characteristics at loca-
tions within the simulation domain. However, wave characteristic
forecast simulations for several hours to several days also can be
performed with these wave models.

Sources of Uncertainties of Wave Models

Figure 1 shows different sources of uncertainties of wave model
simulation and how they propagate when wave models are used
to simulate wave conditions.

The buoy data, which are used as input data for hindcast wave
state simulations or validation of simulation results, might lack
certain time durations. The moored buoy can move around the
anchoring point, and movements of the buoy may lead to location
uncertainties when fine grids are used. Furthermore, buoys often
underestimate extreme wave heights of steep waves because they
are going through or along the crest. Deepwater buoy measure-
ments and wind measurements show conditions for a certain point,
whereas for wave state simulations, these measurements are often
applied along the offshore boundary and introduce some loca-
tion/modeling uncertainties. Sometimes the input data used for the
wave models are already simulated data (e.g., simulation of tidal
movements at a certain location) and, therefore, the model uncer-
tainties from the prior simulation are propagating in the wave
model. Furthermore, current, tides, wave, and wind data contain
measurement uncertainties of the measurement devices. The accu-
racy of bathymetry data becomes important for nearshore appli-
cations. Its accuracy depends on the grid size of the data as well
as the way it is determined. In this paper, data are collected from
published validation results performed by others. The validation
data are taken from the different sources shown in Table 7.

Spectral wave models contain different submodels that model
certain physical phenomena. The growth of water waves by wind

as well as wave interactions are based on models and simplifica-
tions concerning, e.g., nonlinear effects. Furthermore, dissipation
of energy due to breaking waves and bottom friction needs to be
modeled. Also, wave propagation is modeled in a way account-
ing for effects like shoaling, refraction, diffraction, and reflection.
Further information about uncertainties related to wave models
can be found in Cavaleri et al. (2007).

Numerical uncertainties due to truncation errors occur when an
infinite sum is approximated using a finite sum. This occurs when
numerical integration is needed or Fourier transform is performed.
Uncertainties related to the simulation resolution depend on the
grid size as well as the time. Smaller grids and smaller time steps
lead to smaller resolution uncertainties, but they increase the sim-
ulation costs.

In general, there are aleatory and epistemic uncertainties for
each wave model. Epistemic uncertainties are related to model
uncertainties, limited amounts of data (statistical uncertainty), and
measurement uncertainties. These uncertainties can be decreased
by increasing the complexity of the simulation. However, aleatory
(physical) uncertainties that are related to the randomness of
nature cannot be decreased and also remain in an accurate simu-
lation. In this case, an aleatory uncertainty could be interannual
variation of extreme values. When considering the published val-
idation data, as performed in this paper, only the resulting wave
model uncertainty can be quantified, not the uncertainties of the
different steps shown in Fig. 1.

Quantification of Uncertainties

In order to validate results from wave state simulations, the
(hindcast) simulation results are compared with measured wave
states from a buoy at a certain location and the same time period.
For quantification of uncertainties, statistical measures like bias
4B5 and root-mean-square error (RMSE), as well as the scatter
index 4SI5, are calculated for a certain buoy measurement data
set (see, e.g., EquiMar, 2010):
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where n is the number of data points, mi is the model-derived
wave parameter at data point i1 and oi is the corresponding mea-
sured wave data. The mean value of the observed data 4o5 is also
considered in the formula above. The bias B gives information
on whether the model generally over- or underestimates the sim-
ulated parameter. The root-mean-square error RMSE indicates the
differences between the observed and modeled values (residuals).
The scatter index SI puts the RMSE in a relative frame. An ideal
model, which reflects nature perfectly, shows bias B and the root-
mean-square error RMSE, as well as the scatter index SI , equal
to 0.

Fig. 1 Different sources of uncertainties to be considered in wave
model simulations
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Fig. 2 Locations where buoy measurements are available for wave model calibrations for different wave models. More information about
the locations can be found in Table 7

When a data set of B, RMSE, and SI values are available,
statistics resulting in a certain mean value and a standard deviation
can be determined:

X =�X =
1
N

N
∑

j=1

Xj
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√

1
N − 1

N
∑

j=1

4Xj −X52

(4)

where X is the mean value, �X is the standard deviation of the
parameter X = 6B1SI1RMSE7, and N indicates the number of
considered validation results. Statistics can be performed for val-
idation results within a certain water depth range or for a certain
wave model.

Another way to estimate model uncertainties is explained in
EN 1990 (2002), Appendix D, where the approach is explained
for test results to estimate material properties. This approach can
be transferred and also applied to simulation results.

Probabilistic Reliability Assessments

Probabilistic reliability assessments consider uncertainties
related, e.g., to the environmental conditions or the load calcula-
tion method. This approach can be used to estimate the probability
of failure of a certain structural component and a certain failure
mode. The uncertain parameters are modeled by stochastic vari-
ables or processes/fields. In probabilistic reliability assessments,
aleatory as well as epistemic uncertainties can be considered.

The failure mode is assumed to be modeled by a limit state
equation g4X5 where the stochastic variables X are included. The
limit state equation represents the limit state of a certain structural
failure mode like sliding, overturning, buckling, or fatigue failure.
The probability of failure, PF , described by a failure mode can be
calculated by using the FORM/SORM approach, where the most
probable failure point is calculated, or simulation techniques. The
reliability index � can be determined by:

PF = PF 4g4X5≤ 05≈ê4−�5 (5)

where ê4 5 is the standard normal distribution function. For more
information about probabilistic reliability analyses using structural

reliability methods, see, e.g., Lemaire et al. (2009) or Madsen
et al. (1986).

DETERMINATION OF WAVE MODEL
UNCERTAINTIES

In this paper the uncertainties of wave models represented by
the bias B, the root-mean-square error RMSE, and the scatter
index SI are quantified. These values are estimated for the signif-
icant wave height and the mean zero-crossing wave period. Wave
model simulations should be validated with, e.g., buoy measure-
ments from a location within the simulated domain. Here dif-
ferent buoy validation results of different wave models are col-
lected from published articles (see Table 7). Water depths up to
300 m are considered here. Figure 2 shows the considered loca-
tions where buoy measurements for wave model validations are
available. The considered validation sets need to have a minimal
duration of one year in order to cover all wave characteristics (like
winter storms) of a certain location.

Table 1 shows the estimated mean bias 4B5, the mean RMSE
value (RMSE), and the mean scatter index 4SI5 for the signifi-
cant wave height and different wave models. The data in Table 1
are based on collected validation results published in articles by
others, and Table 7 gives an overview of these published articles.
From these articles, validation results (B, RMSE, and SI) of the
significant wave height and the mean zero-crossing wave period
are taken for a certain location (water depth) and a certain wave
model. The values B, RMSE, and SI in Table 1 for a certain wave

Meaning SWAN WAM MIKE21 WW III

BHS
(m) 0.0713 0.1085 0.0113 −000190

RMSEHS
(m) 0.4436 0.4665 0.3000 003760

SIHS
4–5 0.3316 0.3763 0.3644 002396

Table 1 Uncertainty about HS simulation results from different
wave models considering all available data. BHS

shows mean bias
value; RMSEHS

shows mean RMSE; SIHS
is equal to the mean

scatter index value of HS .
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Fig. 3 Bias B values of significant wave height 4HS5 for different
water depths and different wave models

model represent the mean values of the values taken from the
published articles shown in Table 7.

The wave models SWAN, WAM, and MIKE21 SW show a
slight underestimation of the significant wave height compared
with buoy data, whereas the WAVEWATCH III shows a small
overestimation of the significant wave height. Values for RMSE
are in the range between 0.3 m and 0.47 m. The smallest mean
RMSE values show for MIKE21 SW simulations and the largest
values for WAM simulation data. The mean scatter index SI for
the significant wave height is between 0.24 and 0.38.

It is assumed that the bathymetry impacts the accuracy of the
modeled wave data. The bathymetry is reflected here with differ-
ent water depths. Figure 3 shows the bias B resulting from dif-
ferent wave models dependent on the water depth. The bias is
less scattered for all different wave models when the water depth
increases, whereas its mean values remain roughly constant when
the water depth is changed.

The tendency for RMSE to be dependent on the water depth is
shown in Fig. 4. For SWAN, WAM, and WAVEWATCH III, the
RMSE value decreases when the water depth is increased, whereas
for MIKE21 SW, the RMSE value increases when the water depth
is increased.

Figure 5 shows the scatter index SI for buoy measurement val-
idations at different water depths and different wave models. The
scatter index slightly decreases for SWAN and MIKE21 SW simu-
lations. The WAM model results in a more or less constant signif-
icant wave height scatter index for different water depths, whereas
for WAVEWATCH III simulations, the scatter index increases
slightly for increased water depths.

Fig. 4 Root-mean-square RMSE values of significant wave height
4HS5 for different water depths and different wave models

Fig. 5 Scatter index SI values of significant wave height 4HS5 for
different water depths and different wave models

Meaning SWAN WAM MIKE21 WW III∗

BTZ
(s) 0.2034 −001800 0.0321 —

RMSETZ
(s) 2.5673 101789 0.7986 —

SITZ 4−5 0.3640 002303 0.1830 —

∗ WW III: WAVEWATCH III
Table 2 Uncertainty about TZ simulation results from different
wave models considering all available data

For the mean zero-crossing wave period TZ , also bias B, root-
mean-square error RMSE and scatter index SI data are available
(taken from references shown in Table 7). For WAVEWATCH III
simulations, no TZ data are available. Table 2 shows the mean
values of bias B and root-mean-square error RMSE as well as the
mean scatter index SI of the modeled mean zero-crossing wave
period for different wave models. The SWAN model tends to
underestimate the mean zero-crossing wave period, whereas the
WAM model shows a slightly overestimated mean zero-crossing
wave period, and the MIKE21 SW wave model indicates no sig-
nificant bias value. The largest scattering occurs for the SWAN
simulations. The smallest scattering is observed for the MIKE21
SW model.

The uncertainty values, like bias B, root-mean-square error
RMSE, or scatter index SI , of the mean zero-crossing wave period
are dependent on the water depth. Figure 6 shows the considered
bias values of the mean zero-crossing wave period dependent on
the water depth. The bias value increases for SWAN simulations,
whereas for the two other wave models, the bias remains more
or less independent of the water depth. Figure 7 shows the root-

Fig. 6 Bias values of mean zero-crossing wave period 4TZ5 for
different water depths and different wave models
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Fig. 7 RMSE values of mean zero-crossing wave period 4TZ5 for
different water depths and different wave models

mean-square error RMSE for the three wave models dependent on
the water depth. The RMSE values increase for SWAN models
when moving to larger water depths, whereas the MIKE21 SW,
as well as the WAM, model leads to RMSE values that are not
strongly dependent on the water depth. Figure 8 shows the scatter
index SI of TZ dependent on the water depth. Here the considered
validation results from SWAN models also show increased scat-
tering when the water depth is increased, whereas the two other
wave models lead to scatter indices more or less independent of
the water depth.

In order to give a general statement about the uncertainties
of the bias B, the root-mean-square error RMSE values, and the
scatter index SI of the significant wave height and the mean zero-
crossing wave period, all data from the different wave models
are considered and arranged in water depth sections. Furthermore,
Figs. 3 to 8 indicate that the considered variables (B, RMSE, SI)
are uncertain themselves and should be modeled by a stochastic
variable. Table 3 shows statistical information about the bias B
and root-mean-square error RMSE, as well as scatter index SI
values of HS presented in Figs. 3 to 5 for different water depth
ranges, including data from all wave models. Water depths up to
150 m are considered because, for larger water depths, the number
of available values is too low.

The simulated significant wave height is, in general, underes-
timated compared with the measured data. The bias of the sig-
nificant wave height reaches the smallest values for water depths
below 50 m. For larger water depth ranges, the mean bias value is
increased by roughly 0.055 m at every 50 m water depth increase.
Also, the scattering of the significant wave height increases when
the water depth increases. The mean scatter index of the sig-
nificant wave height is equal to 0.27 for water depths less than

Fig. 8 Scatter index values of mean zero-crossing wave period
4TZ5 for different water depths and different wave models

Water depth d (m) < 50 50–100 100–150

No. of considered data sets 65 52 14

BHS
(m) �BHS

0.06 0.12 0.17
�BHS

0.24 0.30 0.29

RMSEHS
(m) �RMSEHS

0.42 0.48 0.50
�RMSEHS

0.19 0.19 0.27

SIHS
4−5 �SIHS

0.27 0.31 0.33
�SIHS

0.20 0.13 0.14

Table 3 Significant wave height uncertainty of bias BHS
, root-

mean-square error RMSEHS
, and scatter index SIHS

for three dif-
ferent water depth ranges considering all results from the different
wave models presented in Figs. 3 to 5

Water depth (m) < 50 50–100 100–150

No. of considered data sets 22 16 8

BTZ
(s) �BTZ

−0023 0.18 0.29
�BTZ

0086 0.78 1.62

RMSETZ
(s) �RMSETZ

2001 1.09 1.46
�RMSETZ

1035 0.57 1.18

SITZ (–) �SITZ
0023 0.22 0.24

�SITZ
0017 0.08 0.15

Table 4 Mean zero-crossing wave period uncertainty of bias BTZ
,

root-mean-square error RMSETZ
, and scatter index SITZ for three

different water depth ranges considering all results from the dif-
ferent wave models presented in Figs. 6 to 8

50 m, and its value increases to 0.33 when reaching water depths
between 100 and 150 m.

Table 4 shows the statistical information for the zero-crossing
wave period. The considered data in Table 4 contain the data pre-
sented in Figs. 6 to 8 for different water depth ranges, including
all different wave models. The mean zero-crossing wave period
bias increases when the water depth increases. For water depths
less than 50 m, the simulated mean zero-crossing wave period
is slightly overestimated, whereas it is underestimated for water
depths larger than 50 m. The mean scatter index of the zero-
crossing wave period is constant for different water depths. The
highest accuracy of the considered data and wave models occurs
for water depths between 50 and 100 m. In this range, the bias,
the root-mean-square error, and the scatter index have the small-
est values.

GENERIC EXAMPLE

The following generic example shows how wave model uncer-
tainties can be implemented in probabilistic reliability assess-
ments. This section considers a simple limit state that focuses on
the bending of the Wavestar piles due to extreme slamming loads
of breaking waves. Figure 9 shows a photograph of the Wavestar
prototype located at the Danish North Sea coast near Hanstholm,
Denmark. The device consists of four piles, two floaters, and
a main platform that carries different electrical and mechanical
components. Electricity is produced by a hydraulic cycle that
transfers the kinetic energy of the floaters to a turbine. The tur-
bine then impels a generator. The floaters of the device can be
moved up from the water surface into so-called “storm protection
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Fig. 9 Photo of Wavestar prototype with one floater on water
surface ("production mode") and one lifted from water surface
("storm protection mode")

mode” (see Fig. 9) in order to limit extreme wave loads onto the
floater structure.

The generic example is based on a static approach and only
considers extreme slamming wave loads, which are assumed to
be the dominating load during storm conditions. Wind loads, as
well as current loads, are not considered in this generic example.

The piles are thin-walled hollow structures. The limit state
equation of the failure mode “Bending failure of piles due to
slamming of breaking wave loads” can be written as:

g =Mcr − l · FS ·XS ·Xdyn (6)

where Mcr is the critical bending capacity, FS is the horizontal
slamming force due to breaking extreme waves, XS indicates the
uncertainties related with slamming load assessments, and Xdyn

represents the uncertainty of using a static 2D approach com-
pared with a dynamic behavior that includes the global structure
of the device and soil properties. The variable l indicates the mean
height at which the waves are slamming into the pile. The critical

Variable Meaning Dist. type Expected value Std. dev. Source

HS1annual1wm Annual ext. HS wave model G 5.27 m 0.56 m DHI (2013b)
C Factor for inst. wave height G 1.86 0.17 Ambühl et al. (2013)
BHS

Bias unc. HS N 0.06 m 0.24 m Table 3
RMSEHS

RMSE HS N 0.42 m 0.19 m Table 3
TZ4HS1annual1wm5 Unc. of TZ given HS1annual1wm LN 8.54 s 1.02 s DHI (2013b)
BTZ

Bias unc. TZ N −0023 s 0.86 s Table 4
RMSETZ

RMSE TZ N 2.01 s 1.35 s Table 4
d Water depth D 17 m DHI (2013b)
D Diameter pile D 2 m Prototype
t Thickness pile D 0.05 m Prototype
g Accel. of gravity D 9.81 m/s2

�w H20 density D 1000 kg/m3

E Young’s modulus LN 201 105 MPa 4200 MPa Tarp-Johansen et al. (2002)
XE Unc. Young’s modulus LN 1 0.02 Tarp-Johansen et al. (2002)
Fy Yield stress LN 240 MPa 12 MPa Tarp-Johansen et al. (2002)
XFy

Unc. yield stress LN 1 0.05 Tarp-Johansen et al. (2002)
Xcr Unc. bending model LN 1 0.05 JCSS (2001)
Xdyn Unc. dynamic response LN 1 0.1 JCSS (2001)
XS Unc. slamming loads LN 1 0, 0.1, 0.2, 0.3
� Curling factor D 0.4 Goda et al. (1966)
� Horizontal asymmetry factor N 0.6 0.1 Myrhaug and Kjeldsen (1986)

Dist.: distribution; std. dev.: standard deviation; ext.: extreme; inst.: instantaneous; unc.: uncertainty; accel.: acceleration; D: deterministic;
G: Gumbel; LN: log normal; N: normal.

Table 5 Stochastic model used for failure mode “Bending failure of pile due to extreme slamming wave loads”

bending moment can be calculated according to:

Mcr =
1
6

(

1 − 0084
D

t

FyXFy

EXE

)

[

D3
− 4D− 2t53

]

FyXFy
Xcr (7)

where D is the diameter of the pile, t is the thickness of the
pile, Fy is the yield stress of structural steel (including material
uncertainties), XFy

is the model uncertainty related to yield stress,
E is the Young’s modulus of structural steel (including material
uncertainties), XE is its model uncertainty, and Xcr is the model
uncertainty of critical load capacity (see Tarp-Johansen et al.,
2002). Table 5 shows information about the values and distribu-
tion parameters used for the reliability assessment. Values for the
pile diameter D, as well as the thickness t, are taken from the
prototype at Hanstholm. The pile diameter is equal to 2 m and
the thickness of the pile is 5 cm.

The extreme slamming wave loads, FS , consider slamming
loads of a wave breaking in front of the pile. The highest hor-
izontal peak wave load while the breaking wave is passing the
cylinder cross-section can be calculated according to Goda et al.
(1966):

FS =
�� wDC2

b Nb �

2
(8)

where �w is the water density, Nb is the maximum surface eleva-
tion when the wave is breaking, � is the curling factor, and Cb is
the wave celerity. It is assumed in Eq. 8 that the vertical breaker
front has height equal to �Nb and moves with celerity Cb . The
maximum surface wave elevation Nb at breaking can be calculated
according to:

Nb =�CHs1annual (9)

where � is the horizontal asymmetry considering the amount of
the wave height above the mean seawater level. This value is esti-
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mated based on measurements in Myrhaug and Kjeldsen (1986).
HS1annual gives the annual extreme significant wave height, and C is
the factor leading from the significant wave height to the extreme
instantaneous wave height during three hours of wave elevation
at a certain wave state.

The wave celerity Cb using linear wave theory is equal to:

Cb =
gT 4HS1annual5

2�
tanh

(

2�d
L

)

(10)

where T 4HS1annual5 is the wave period given HS1annual, d is the
water depth, and L is the wave length.

The length l (see Eq. 6) in this case is assumed to be equal to:

l = d+ 41 −�/25Nb (11)

The annual extreme significant wave height HS1annual can be calcu-
lated from the sum of the annual extreme significant wave height
estimated from the wave model 4HS1annual1wm5 and the uncertainty
related to wave model, BHS

, which is assumed to be a normal
distributed variable 4N 4BHS

1RMSHS
55 with mean value equal to

the bias of HS and the standard deviation equal to the root-mean-
square error of HS . Because the bias value and the root-mean-
square error are uncertain (see Figs. 3 and 4), these values are
modeled as stochastic variables. The resulting annual extreme sig-
nificant wave height, HS1annual, can be calculated in the following
way:

HS1annual =HS1annual1wm +BHs
(12)

The same approach can be used for calculating the mean zero-
crossing wave period TZ4HS1annual5:

TZ = TZ
(

HS1annual1wm

)

+BTZ
(13)

where BTZ
is normal distributed with mean value BTZ

and stan-
dard deviation RMSETZ

(

BTZ
=N

(

BTZ
1RMSETZ

))

. It represents
the normal distributed uncertainty about the mean zero-crossing
wave period from the wave models. Also, for the mean zero-
crossing wave period, the bias, BTZ

, and the root-mean-square
error, RMSETZ

, are related to uncertainties and modeled as
stochastic variables.

The annual extreme significant wave height, as well as the
mean wave period conditional on the significant wave height, is
calculated based on a hindcast simulation over 31 years using
MIKE21 SW. The uncertainties of the numerics (truncation errors)
are assumed to be negligible.

The reliability assessment will use Comrel software (see RCP
GmbH, 2004) and the stochastic model shown in Table 5. Table 6
shows the annual reliability index and the corresponding annual
probability of failure for different slamming load uncertainties
4XS5 with and without considering the wave model uncertainties
of HS and TZ . For this generic example, the consideration of wave
modeling uncertainties increases the probability of failure com-
pared with no consideration. Furthermore, it increases the prob-
ability of failure when the uncertainty is increased related to the
modeling of slamming loads. Annual minimal reliability indices
of structural components for offshore wind turbines are accepted
to be in the range between 3.1 and 3.7. The resulting annual reli-
ability index for this generic failure mode is within this range
when the slamming load is smaller than 0.2.

With wave Without wave
model unc. model unc.

Std. dev. XS � PF � PF

0.0 3.38 3059 10−4 3.59 1089 10−4

0.1 3.27 5054 10−4 3.44 2089 10−4

0.2 2.97 1047 10−3 3.13 8070 10−4

0.3 2.63 4022 10−3 2.76 2088 10−3

Std. dev: standard deviation; unc.: uncertainty.

Table 6 Resulting annual reliability index 4�5 and the corre-
sponding annual probability of failure 4PF 5 due to slamming
loads at the piles including wave model uncertainty and with-
out wave model uncertainty (HS1annual = HS1annual1wm and TZ =

TZ4HS1annual1wm5)

CONCLUSIONS

Validation results of wave models using buoy measurement
data are collected in this paper in order to assess the uncertainty
related to wave models, which are often used for site assessments
of WECs. Uncertainties related to the bias and the root-mean-
square error, as well as the scatter index, are collected from pub-
lished validation data for the significant wave height and the mean
zero-crossing wave period. The resulting uncertainties can be used
and included in probabilistic structural reliability assessments of
WECs. An illustrative generic example focusing on the bending
failure of the Wavestar device piles due to extreme wave slam-
ming loads shows how the uncertainties can be implemented in
probabilistic reliability assessments.
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APPENDIX

The collected validation data from published articles is shown
in Table 7.

Wave model Reference Wave model Reference

MIKE21 SW DHI (2013b) SWAN Neill and Hashemi (2013)
MIKE21 SW Sabique et al. (2012) MIKE21 SW Aydoğan et al. (2013)

SWAN Akpınar et al. (2012) SWAN Stopa et al. (2013)
SWAN Rusu et al. (2008a) WAM Carretero Albiach et al. (2000)
WAM Ponce de León et al. (2011) WAM Ratsimandresy et al. (2008)
WAM Cieślikiewicz and Paplińska-Swerpel (2008) WW III Chawla et al. (2013)
WAM Musić and Nicković (2008) SWAN MET (2011)
SWAN Rusu and Guedes Soares (2012) WAM Dykes et al. (2002)
WAM Ponce de León and Guedes Soares (2010) SWAN Dykes et al. (2002)

MIKE21 SW Ayat (2013) WAM Berg (2008)
WAM Pilar et al. (2008) MIKE21 SW Holbom (2011)

WW III Zheng et al. (2013) WAM Mazarakis et al. (2012)
SWAN Rusu et al. (2008b) WAM Gorman et al. (2003)
SWAN Bolaños-Sanchez et al. (2007) SWAN Kriezi and Broman (2008)
WAM Bolaños-Sanchez et al. (2007) SWAN Bento et al. (2011)
WAM Liberti et al. (2013) SWAN Kamranzad et al. (2013)
SWAN Rusu et al. (2011)

Table 7 Information about the considered validation data for different wave models and published articles


