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1.2 Short description of project objective and results  
The objective of this project was to investigate the potential of economic model predictive 
control (MPC) of residential space heating systems to provide demand response. The case 
investigated was existing multifamily residential buildings facing retrofit.  
 
Using time varying tariffs from the day-ahead wholesale power market, MPC of the retrofit-
ted buildings can achieve operational cost savings of up to 13% - and up to 19% if intraday 
trading was included. Moreover, CO2 emissions associated with the power production was 
reduced with up to 3%, and consumption in peak periods was reduced by up to 50%. 
 
Consequently, MPC of heating systems in retrofitted residential buildings can be a valuable 
assert in the balancing of the energy system, while also saving operational cost and CO2 
emissions.  
 

 
Formålet med dette projekt var at undersøge om det er muligt at opnå smart grid fordele 
ved model-baseret styring (MPC) af boligvarmeanlæg i eksisterende etageboliger. 
 
Projektet demonstrerer, at man ved hjælp af MPC og tidsvarierende takster fra elmarkedet 
(day-ahead) kan opnå driftsbesparelser på op til 13% - og op til 19%, hvis intra-day marke-
det blev inkluderet. Derudover blev CO2-emissioner fra energiproduktionen reduceret med 
op til 3%, og forbruget i spidsbelastningsperioder blev reduceret med op til 50%. Disse po-
tentialer afhænger af bygningers energieffektivitet. 
 
Konklusionen er, at MPC af bygningers varmesystemer kan bruges til at balancere energisy-
stemet, spare driftsomkostning hos forbrugeren, og reducere samfundets CO2-emissioner. 
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1.3 Executive summary 
Economic model predictive control (MPC) of heating systems in retrofitted residential build-
ings are able to provide demand response for balancing of the energy system, end-user en-
ergy savings, and reduction in CO2 emissions.  
 
1.4 Project objectives 
 
The overall objective of the project was to investigate the ability of residential buildings to 
participate actively in smart grids – before and after an energy-retrofit. After a review of 
energy consumption in these type of buildings, the remaining project focused on investigat-
ing whether the energy use for space heating could be made flexible for smart grid purposes 
using model predictive control to store and release heat in the thermal mass of the building 
according to the need of the energy system as a whole.  
 
The intended method of the project was to make theoretical investigations of potentials in 
simulation-based studies, and then test whether it was possible to redeem these potentials in 
actual buildings which was a part of the much larger EU-funded project READY. However, 
due to large delays in the READY project, it was not possible to use the buildings in 
READY.dk. 
 
The initial intention of making simulation-based investigations was fulfilled where it was 
demonstrated that retrofitted buildings has the potential to become a viable assert in a smart 
grid system.  
 
Since it was not practical possible to test the findings in real buildings, focus was put on an-
other initial objective of the project, namely the methodology to identify and quantify the 
smart grid potential that is related to energy-retrofit of existing buildings – both on building 
scare and city scale. Furthermore, several simulation-based investigations were conducted to 
contribute to the development of a reliable economic model predictive control scheme suita-
ble for real application. 
 
Finally, the project managed to test the simulated potential in a real setting – but not in a 
real building as initially intended. A laboratory experiment of an implemented prototype of 
the two-level economic model predictive control scheme was performed, and the results sug-
gested that the prototype successfully exploited the ability to store heat in thermal mass to 
minimize heating consumption during high price periods. Further experimental studies are 
required to verify whether the theoretical potentials can be realised in practice. 
 
1.5 Project results and dissemination of results 
The main activities in the project was to conduct simulation-based studies of the smart grid 
potential of using MPC for building space heating, as well as contribute to the development of 
a reliable economic model predictive control scheme and software/hardware for real applica-
tion. Furthermore, it was a main activity to test the setup in a laboratory setting. 
 
The technical results is the formulation and implementation of algorithms for MPC suitable for 
the purpose. Furthermore, the laboratory experiment demonstrated that it is technically pos-
sible to use existing building energy management hardware (for office buildings) to control 
actual heating systems with the algorithms. Further technical development is needed before 
it is economical feasible to invest in the hardware needed for MPC in residential buildings 
 
The project succeeded to meet its objective to a large extent. Unfortunately it was not possi-
ble to test the technology in actual buildings but this was compensated making relevant ex-
periments in a laboratory setting. 
 
The project was a research project and turnover, exports and employment was not an aspect 
considered in the project. However, the research project has led to three new projects in-
volving industrial partners who are interested in implementing the controller as a part of 
their commercial business. 
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The project results have been disseminated through numerous activities: several invited 
talks about the project (domestic and international), participation in IEA annex 67, M.Sc. 
courses at Aarhus University, and a total of seven papers in scientific international journals 
with high impact factors, and six international scientific conference papers. The written dis-
semination is compiled in the PhD thesis of Theis Friis Pedersen. 
 
1.6 Utilization of project results 
Aarhus University, the only contributor in this project, has already utilised the results to es-
tablish three new R&D project together with several partners in the industry. A total of three 
new PhD students have started in the second half of 2019 on new studies helping companies 
to make a scientifically sound implementation and test of the technology in their current 
product portfolio.  
 
The project results is an integrated part of the teaching activities at Aarhus University, where 
new M.Sc. projects featuring further development of the technology has been and is current-
ly conducted. Several scientific papers (a total of 13) about the project has been published, 
and there will be more based on recent activities. 
 
1.7 Project conclusion and perspective 
The theoretical potential of MPC of heating system in retrofitted buildings is operational cost 
savings of up to 19%. Moreover, CO2 emissions associated with the power production can be 
reduced with up to 3%, and consumption in peak periods was reduced by up to 50%. MPC of 
heating systems in retrofitted residential buildings is therefore potentially a valuable assert in 
the balancing of the energy system, while also saving operational cost and CO2 emissions. 
 
Provided that the potential can be realised in practice, buildings should now be regarded as 
an active assert in the energy system rather than a passive consumer of energy. Conse-
quently, it is not only the energy-efficiency of buildings that should be of interest to building 
owners and society but also energy flexibility potential of buildings should be considered. 
Future building regulatory demands in terms of energy efficiency should not only reflect a 
balance between investments in energy-efficiency and energy production but also include the 
potential of investments in energy flexibility technologies.  
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Preface 
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the Department of Engineering at Aarhus University under the supervision of Associate Professor 
Steffen Petersen. 

The thesis contributes to the development of a reliable model predictive control scheme suitable for 
real application in residential buildings to enable non-dispatchable demand response programs of 
space heating. The work investigates the theoretical demand response potentials in residential 
buildings using economic model predictive control and, in particular, addresses some of the practical 
aspects involved when applying model predictive control schemes for real applications. 

The main body of the thesis starts with a brief introduction to the general principle of non-
dispatchable demand response and demand response assessment together with a description of a 
generic model predictive control formulation. As such, these two sections provide an overview of 
the theoretical basis for the thesis work. The following sections report on the main contributions of 
the thesis, based on a collection of seven primary scientific papers. Four of the papers are published 
in peer-reviewed scientific journals, two papers are published at peer-reviewed scientific 
conferences, while the seventh manuscript is under review at a scientific journal. 

I would like to express my thanks to my supervisor Steffen Petersen for his continuous guidance and 
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lows of the years of thesis work.  
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Abstract 
The concept of demand response covers a wide range of services whereby consumers make 
permanent or temporary adjustments of their consumption in response to an external request from 
the energy system. The work presented in this thesis concerns temporary demand response. More 
specifically, it concerns the application of economic model predictive control to enable non-
dispatchable demand response programs of space heating in response to a time-varying cost signal. 
The work investigates the theoretical potential of non-dispatchable demand response programs and, 
in particular, addresses some of the practical aspects involved when applying economic model 
predictive control schemes. The overall aim of the thesis work was to contribute to the development 
of a reliable economic model predictive control scheme suitable for real application in residential 
buildings, with a focus on existing residential buildings facing retrofits.  

The simulation-based investigations indicated that residential buildings participating in non-
dispatchable demand response programs can provide substantial balancing services to the energy 
system, while simultaneously achieving operational cost savings. Furthermore, the results indicate 
that buildings with a higher energy efficiency engaged in demand response more frequently and, 
consequently, achieved higher relative performance. Simulation results suggested that an energy-
efficient residential building participating in non-dispatchable demand response programs 
considering time varying tariffs from the day-ahead wholesale power market achieved operational 
cost savings of up to 13%, while considering intraday trading simultaneously increased the total 
operational cost savings by up to 19%. Moreover, non-dispatchable demand response enabled 
significant benefits for the energy systems, e.g. reductions of CO2 emissions associated with the 
power production of up to 3%, while at the same time reducing space heating consumption in peak 
periods by up to 50%.   

To achieve the maximum benefits of participating in demand response programs, while still ensuring 
thermal comfort, a two-level economic model predictive control setup is suggested to be the most 
appropriate for real applications. In an attempt to move towards a practical verification of the 
theoretical identified potentials, a proof-of-concept laboratory experiment of an implemented 
prototype of the two-level economic model predictive control scheme was performed. The 
preliminary results suggested that the implemented prototype successfully exploited the ability to 
store heat in thermal mass to minimize heating consumption during high price periods. Further 
experimental studies are, however, required to definitively verify the theoretical potentials.   
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Resumé 
Begrebet efterspørgselsreaktion (demand response) dækker over en portefølje af tjenester, hvor 
forbrugere foretager permanente eller midlertidige ændringer af deres forbrug som reaktion på en 
ekstern anmodning fra energisystemet. Nærværende afhandling vedrører anvendelsen af  økonomisk 
model-baseret prædiktiv kontrol i beboelsesejendomme til at aktivere efterspørgselsreaktion af 
rumopvarmning som en reaktion på et tidsvarierende prissignal. Arbejdet undersøger de teoretiske 
potentialer ved at deltage i efterspørgselsreaktion, men behandler især nogle af de praktiske aspekter 
der er involveret i anvendelsen af økonomisk model-baseret prædiktiv kontrol. Formålet er at bidrage 
til udviklingen af en pålidelig økonomisk model-baseret prædiktiv kontrol, der egner sig til 
anvendelse i beboelsesejendomme med særligt fokus på eksisterende beboelsesejendomme, der står 
over for behov for omfattende renovering. 

De simuleringsbaserede undersøgelser viste, at beboelsesejendomme der tilbyder efterspørgsels-
reaktion kan levere betydelige balanceringstjenester til energisystemet samtidig med, at de private 
husejere opnår driftsbesparelser. Endvidere indikerer resultaterne, at bygninger med højere 
energieffektivitet oftere deltager i efterspørgselsreaktion og derved opnår større udbytte. 
Simuleringsresultater for en energieffektiv beboelsesejendom viser, at tidsvarierende priser fra day-
ahead el-engrosmarkedet medførte driftsbesparelser på op til 13%, mens intraday handel øgede de 
samlede driftsbesparelser op til 19%. Endvidere muliggjorde efterspørgselsreaktion betydelige 
fordele for energisystemerne, f.eks. reduktion af CO2-emissioner på op til 3% i forbindelse med 
produktion af elektricitet, samtidig med at rumvarmeforbruget i spidsbelastninger blev reduceret med 
op til 50%. 

Til virkelige applikationer viste en to-niveau økonomisk model-baseret prædiktiv kontrolopsætning 
sig at være den mest hensigtsmæssige opsætning for at opnå de maksimale fordele ved at deltage i 
efterspørgselsreaktion og samtidig sikre termisk komfort. I et forsøg på en praktisk verifikation af de 
teoretisk identificerede potentialer, blev der udført et proof-of-concept laboratorieeksperiment af en 
prototype af den to-niveau økonomiske model-baseret prædiktive kontrolopsætning. De foreløbige 
resultater indikerer, at den implementerede prototype med succes udnyttede evnen til at lagre varme 
i den termisk masse for at minimere rumopvarmningsforbruget i højpris perioder. Yderligere 
eksperimentelle undersøgelser er imidlertid påkrævet for at verificere de teoretiske potentialer 
endeligt. 
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1 Introduction 
In the pursuit of minimizing the effects of global warming, the Danish government has stated an 
ambitious climate policy, partly driven by international obligations and partly by ambitious national 
targets, to aid the transition towards a sustainable low-emission society independent of fossil fuels 
by 2050. The Danish government has formulated several milestones to help achieve this target, e.g. 
that 30% and 50% of the energy consumed in Denmark should be covered by renewable energy 
sources (RES) by 2020 and 2030, respectively [1, 2]. Consequently, there has been a particular focus 
on increasing the share of wind power in Denmark to achieve these milestones, thus wind power 
production covered approx. 43% of the total national electricity consumption in 2017 [3]. However, 
this increasing penetration of intermittent RES such as wind power complicates the important task 
of maintaining an instantaneous balance between electricity supply and demand. Supply-side 
management (SSM) today almost exclusively ensures this balance, where a dedicated power plant or 
supply-side storage – often using fossil fuels – ramps up or down their electricity generation and 
consumption for the required durations and magnitudes. As the penetration of RES increases, the 
task of ensuring this balance in a cost-effective manner by SSM becomes similarly challenging, since 
the power output of RES is highly dependent on meteorological conditions. It would require that 
traditional supply-side flexibility sources, such as power plants, operate in ways that cause low 
efficiency and, consequently, high operational costs. Therefore, the recent focus has been on demand-
side management (DSM) measures to assist in continually balancing supply and demand. DSM 
covers a wide range of services where consumers make permanent or temporary adjustments to their 
consumption in order to meet the needs of the system [4-7]. Traditionally, temporary DSM measures 
are generally considered in relation to power systems; however, district heating (DH) networks may 
equally benefit from temporary DSM measures, as DH networks, in the near future, will be strongly 
coupled with the power grid to further increase the integration of RES [8, 9]. 

The building sector has been identified as a major focus area regarding permanent DSM, i.e. 
increasing the energy efficiency of buildings, due to their long lifetime and significant energy 
consumption. Therefore, it has been mandatory since 2006 for countries in the European Union (EU) 
to follow a regulatory framework that is laid out in the Energy Performance of Buildings Directive 
(EPBD) [10] and Energy Efficiency Directive (EED) [11]. Among other aspects, the directives state 
that each EU country must define minimum requirements for the energy performance of new 
buildings and building elements (in EPBD), and that EU countries must make a long-term retrofit 
strategy of the national building stock (in EED). A proposal for an amendment of the EPBD was 
presented in 2016 [12], in which the introduction of a smartness indicator that evaluates the 
building’s technological readiness to efficiently interact with the grid was suggested: 

“The smartness indicator shall cover flexibility features, enhanced functionalities and 
capabilities resulting from more interconnected and built-in intelligent devices being integrated 
into the conventional technical building systems. The features shall enhance the ability of 
occupants and the building itself to react to comfort or operational requirements, take part in 
demand response and contribute to the optimum, smooth and safe operation of the various 
energy systems and district infrastructures to which the building is connected.” [12] 

The energy performance requirements for new buildings and the selection of retrofit measures are 
currently based on a cost-optimal balance between investment costs and energy savings. However, 
the introduction of a smartness indicator in EPBD might influence this balance; the challenge is now 
to identify the cost-optimal balance between investment costs, energy savings and the ability of 
buildings to provide balancing services to the energy systems through DSM measures. 
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1.2 Demand-side management 
The term demand-side management (DSM) was first introduced in the early 1980s [4] and extensive 
reviews on the concept can be found in [13, 14]; thus, only a short overview of DSM is provided in 
the following to introduce the concept for the reader. DSM covers a wide span of categorized 
measures that are designed to influence consumers’ electricity1 use in various ways, as given in Fig. 
1, which is a reproduction of the concept as defined in [14]. The overall aim of these measures is to 
change consumers’ electric consumption pattern, i.e. the time pattern and magnitude, to attain a 
desired load shape, which depends on the characteristics and state of the energy system [5, 15]. In 
the power system, as the penetration of wind power increases, one objective is, for example, to shift 
the bulk of the energy consumption to periods of high production from wind turbines. Another 
objective could be to shift the energy consumption to periods of low CO2 emissions stemming from 
production, which is not necessarily correlated with the wind power production [16]. In district 
heating networks, one objective is, for example, to minimize peak consumption to ensure a higher 
production efficiency and to increase network capacity.  
Encouraging consumers to adjust their consumption in response to an external request is referred to 
as demand response (DR). There is no commonly agreed upon distinction between the immediately 
similar terms DSM and DR and they are often used interchangeably. In this thesis, the definition that 
DSM is a parent term that includes DR as a designation for ranges of measures (see Fig. 1) is adopted. 
In this definition, there is a clear distinction between permanent demand response and temporary 
demand response programs. Permanent DR consists of measures that aim at changing the 
consumption pattern on a long-term horizon, i.e. retrofitting with low-energy windows and extra 
insulation (energy efficiency), changing occupant behavior (conservation) or to convert the load to 
another type of energy (load building). Temporary DR aims at changing consumption on a shorter 
time horizon when temporary adjustments are sought by the supply side of the energy system. 
Temporary DR is divided into dispatchable and non-dispatchable programs. To some extent, the 
terminologies dispatchable and non-dispatchable DR overlap with other categorizations such as 
direct and indirect control or incentive- and price-based DR [17]. Dispatchable DR programs refer 
to resources where the consumer is obliged to allow transmission system operators (TSO) or other 
market entries direct control to modulate the demand to meet their objective, e.g. deliver up- and/or 
downwards adjustments with a short notification time (reliability) or participate on equal terms on 
various energy markets (economy). Non-dispatchable DR programs imply the use of economic 
incentives, for instance by broadcasting a time-varying cost signal to the consumers to achieve an 
expected response. The term cost signal does not necessarily refer to economic aspects, but could 
just as well be a signal that reflects the share of wind power in the energy system or a CO2 intensity 
signal. The most common cost signal is time-of-use (TOU) tariffs, which have replaced fixed-price 
tariffs for small consumers in many countries [17]. TOU tariffs refer to static prices that are set in 
advance but vary over the day. Since TOU tariffs are static, they do not represent the current state of 
the energy systems, and are thus not suitable to address issues regarding intermittent imbalances. 
Therefore, TOU tariffs are typically used to shift energy consumption from fixed peak to off-peak 
periods. Critical peak prices (CPP) tariffs are superimposed on TOU tariffs at critical peak periods, 
for instance at times of extremely high wholesale prices, to better reflect the state of the energy 
system. Dynamic real-time prices (RTP) best reflect the current state of the energy system and 
represent the most suitable cost signal to handle imbalances. In most cases, day-ahead wholesale 
electricity prices are used as RTP tariffs; however, in some situations, intraday prices may be 
favorable (for a brief review on the power markets see e.g. [P3]). 
                                                      
1 As previously mentioned, this early definition unnecessarily restricts DSM to power systems. However, other 
energy systems such as district heating networks could also benefit from DSM. 
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Fig. 1. Schematic overview of DSM measures. Reproduction from [14]. 

There is a great political awareness and focus on ensuring feasible permanent DR from buildings, for 
example, through legislations that require increasing energy efficiency, while temporary DR 
programs have primarily been offered to individual large-scale industrial and commercial consumers 
[18, 19]. However, residential consumers as a group represent a significant share of the total energy 
consumption. Private households accounted for approx. one-third of the total gross energy 
consumption in Denmark in 2016, of which space heating and heating of domestic hot water 
constituted approx. 83%, and the remaining 17% was used for electrical appliances and lighting [20]. 
Therefore, several recent studies have suggested that residential buildings also constitute a significant 
potential for temporary DR. 

1.3 Residential energy flexibility 
In the context of residential buildings, several studies have demonstrated the ability to perform 
temporary DR using, for example, wet appliances [21-24], electrical storage [25-27], active thermal 
storage (e.g. domestic hot water tanks) [28, 29] or passive thermal storage [30-36]. All resources 
entail pros and cons in terms of charging capacity, storing efficiency, discharging duration and 
investment costs. Because passive thermal storage is already available in the form of structural 
thermal mass, the investment cost of utilizing such storage is limited to an upgrade of the space 
heating control system. Therefore, this capacity has been demonstrated to be a cost-effective storage 
resource compared to other storage options to enable DR programs [37, 38]. Utilizing the structural 
thermal mass as heat storage inherently requires modulations of the indoor temperature to charge and 
discharge the storage. It is thus important to constrain the modulations to comply with thermal 
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comfort requirements. Consequently, the optimal use of the passive thermal storage for temporary 
DR requires reliable control strategies that explicitly ensure thermal comfort.  

Research in the energy flexibility of residential buildings commonly concerns non-dispatchable DR 
programs as a result of the large number of participants. Furthermore, non-dispatchable DR programs 
allow individual consumers to decide when to participate in DR programs based on the broadcasted 
cost signal and to ensure that thermal comfort requirements are respected. One control approach is 
to establish simple control rules for the heating system based on the variations in the time-varying 
cost signal. Thus, the thermal storage is charged, i.e. the temperature is raised, or discharged, i.e. the 
temperature is decreased, if the cost is below a lower threshold or exceeds an upper threshold, 
respectively. Rule-based control (RBC) is generally used to characterize the flexibility potential of 
buildings [35, 39, 40]. However, Le Dréau and Heiselberg [30] applied such RBC and achieved 
operational cost savings by modulating the temperature setpoint depending on a lower or upper 
threshold on the day-ahead wholesale electricity prices. However, applying such RBC for flexibility 
purposes inherently suffers from two main limitations:  

I. Determining adequate thresholds is difficult as the storage capacity and efficiency of the thermal 
mass depends on the boundary conditions (e.g. weather conditions and occupancy). Furthermore, 
the variations in the cost signal may vary between weeks, months or seasons. 

II. Applying RBC do not guarantee optimal utilization of the thermal storage. 

Therefore, the concept of model predictive control (MPC) has recently received significant research 
attention [41]. MPC is an optimization-based control scheme that relies on a simplified control-model 
of the building thermodynamics, predictions of boundary conditions and explicit constraints on 
inputs (i.e. space heating control inputs) and outputs (i.e. room air temperatures). The objective is to 
determine an optimal control strategy that minimizes a certain cost function, e.g. minimizing 
operational cost based on a time-varying cost signal. Several studies have investigated the potential 
of applying MPC schemes to enable DR [31-33]. Although several studies have suggested a 
significant theoretical potential of applying MPC to enable non-dispatchable DR [14, 32, 33], Killian 
and Kozek [42] identified the development of a reliable MPC scheme as a main barrier for large-
scale applications in residential buildings.
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1.4 Thesis objectives 
The aim of this thesis is to contribute to the development of a reliable MPC scheme suitable for real 
application in residential buildings to enable non-dispatchable DR programs of space heating 
consumption in the heating-dominated climate of Denmark. The focus is on the application in 
existing residential buildings facing retrofits to improve their energy efficiency.  

Previous studies [30, 39] have suggested that the ability to exploit the thermal mass as heat storage 
depends on the energy efficiency of the building envelope. The thesis work therefore includes 
investigations on existing and retrofitted buildings with varying thermal characteristics. The 
objective is to identify any trade-off between energy efficiency and the ability to participate in non-
dispatchable DR programs. Furthermore, it is to identify potential benefits, both for private 
households and for the energy system, of residential buildings participating in DR programs, which 
should encourage investments in updated space heating control systems. However, it is outside the 
scope of this thesis to evaluate the cost-optimal balance of retrofit measures or investments in control 
systems update.  

As mentioned, the thesis work focuses on applying MPC schemes to enable non-dispatchable DR 
programs in existing buildings facing retrofits. While the mathematical aspects of MPC (stability, 
optimization algorithms, etc.) are well described in literature [43-45], using MPC for real 
applications depends on multiple technical aspects that largely come from experience. Therefore, the 
thesis work addresses these practical challenges related to the real application of MPC schemes. The 
objective is to formulate a reliable yet simple MPC scheme to reduce the technical infrastructure and 
hardware requirements. 

Moreover, studies have indicated that the type of heat emitter (floor heating system or baseboard 
heaters) affects the potential for utilizing the thermal mass as heat storage [30, 39]. However, only 
investigations featuring baseboard heaters, which represent the typical heat emitter in existing 
residential buildings in Denmark, were considered within the scope of the thesis work.  

Another prerequisite is that the DR programs used throughout the thesis work are primarily orientated 
towards the state in the power system, as it is expected that the coupling degree between the power 
grid and DH network will increase in the future, principally through the deployment of central and 
local heat pumps. However, considerations on the efficiency factor in the conversion of electricity to 
thermal energy are considered to fall outside the scope of the thesis work.  
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1.5 Thesis outline 
The main body of the thesis starts with a brief introduction of the general principle of non-
dispatchable DR and DR assessment in section 2. It is not an attempt to provide a comprehensive 
and final take on these issues, but merely to reflect on the experience from the years of thesis work. 
A description of a generic MPC formulation is provided in section 3 to introduce the reader to the 
MPC concept used throughout the thesis work. As such, these two sections form an overview of the 
theoretical basis for the thesis work. 

The following sections, 4, 5 and 6, report on the main outcome of the thesis work as extracts of the 
scientific papers [P1-P7], structured in three parts as depicted and explained in Fig. 2. Parts I and II 
cover simulation-based investigations on the DR potential and development of a reliable MPC 
scheme, respectively. Part III deals with proof-of-concept laboratory experiments of an implemented 
prototype of the MPC scheme developed in Part II, in an attempt to move towards a practical 
verification of the theoretical potentials identified in Part I.  

Fig. 2. The structure of the main body of the thesis work.  

Finally, a main conclusion based on the thesis work together with perspectives and recommendations 
for future research efforts are provided in section 7.  

I 

II 
 

Potential 
Investigate the theoretical potential of residential buildings participating in non-dispatchable DR. 
Publications: [P2, P3] 
 

III 

Development 
Contribute to the development of a reliable MPC scheme that is applicable in residential buildings. 
Publications: [P1, P4, P5, P6, P7] 
 
Experiment 
Perform prototype laboratory experiments to demonstrate the ability and benefits of the developed 
MPC scheme. 
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2 Principle of non-dispatchable demand response  
The basic principle of non-dispatchable DR is to determine a control strategy in response to a time-
varying cost signal, with the objective of minimizing the total cost for a finite horizon. An illustration 
of a single DR event, which is defined as a temporary deviation from normal behavior, is given in 
Fig. 3. In this case, normal behavior corresponds to a reference constantly tracking the lower 
constraint bound 𝑡𝑡min, which represents the most energy-efficient control policy. The top figure 
shows the cost signal, which consists of a low price (𝑓𝑓charge) period followed by a high price 
(𝑓𝑓discharge) period. The second figure depicts the resulting room air temperatures in response to the 
cost signal. While the reference controller discarded the variations in the cost signals, the DR 
controller used the thermal mass as heat storage2 by raising the room air temperature during the low 
price period to charge the thermal mass and, in contrast, discharge during the high price period. The 
temperature modulations were restricted by the thermal comfort requirements defined by the lower 
and upper bounds 𝑡𝑡min and 𝑡𝑡max, respectively. The bottom two figures show the heating power and 
the resulting heating difference during the charging 𝜏𝜏charge and discharging 𝜏𝜏discharge periods. The DR 
controller increases the heating consumption in the charging period significantly, while reducing the 
heating consumption moderately but over a considerably longer discharge period.    

 

Fig. 3. Principle of non-dispatchable DR 

  

                                                      
2 The same principle applies for active heat storages resources (e.g. domestic hot water tanks), considering 
different constraints. 
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The total cost over the charging and discharging periods for the reference and DR controller denoted 
𝐹𝐹ref and 𝐹𝐹DR, respectively, are specified in Eqs. (1) and (2). 

𝐹𝐹ref = � 𝛷𝛷ref(𝜏𝜏) ∙ 𝑓𝑓charge(𝜏𝜏) 𝑑𝑑𝜏𝜏 
𝜏𝜏charge

0
+  � 𝛷𝛷ref(𝜏𝜏) ∙ 𝑓𝑓discharge(𝜏𝜏) 𝑑𝑑𝜏𝜏

𝜏𝜏discharge

0
 (1) 

𝐹𝐹DR = � 𝛷𝛷DR(𝜏𝜏) ∙ 𝑓𝑓charge(𝜏𝜏) 𝑑𝑑𝜏𝜏 
𝜏𝜏charge

0
+  � 𝛷𝛷DR(𝜏𝜏) ∙ 𝑓𝑓discharge(𝜏𝜏) 𝑑𝑑𝜏𝜏

𝜏𝜏discharge

0
 

(2) 

As seen in Fig. 3 the prices 𝑓𝑓charge and 𝑓𝑓discharge are assumed to be time-invariant, thus Eqs. (1) and 
(2) simplify to the discrete Eqs. (3) and (4), where the heating consumption is summarized for each 
time step and ∆𝜏𝜏 represents the duration between time steps. 

𝐹𝐹ref = 𝑓𝑓charge ∙ � 𝛷𝛷ref[𝜏𝜏]
𝜏𝜏charge

𝜏𝜏=1

∙ ∆𝜏𝜏 +  𝑓𝑓discharge ∙ � 𝛷𝛷ref[𝜏𝜏]
𝜏𝜏discharge

𝜏𝜏=1

∙ ∆𝜏𝜏  (3) 

𝐹𝐹DR = 𝑓𝑓charge ∙ � 𝛷𝛷DR[𝜏𝜏]
𝜏𝜏charge

𝜏𝜏=1

∙ ∆𝜏𝜏 +  𝑓𝑓discharge ∙ � 𝛷𝛷DR[𝜏𝜏]
𝜏𝜏discharge

𝜏𝜏=1

∙ ∆𝜏𝜏  (4) 

As previously mentioned, the objective is to minimize the total cost function, i.e. fulfilling the 
condition that 𝐹𝐹DR < 𝐹𝐹ref, which equals the condition stated in Eq. (5). 

𝐹𝐹DR − 𝐹𝐹ref < 0 (5) 

Inserting Eqs. (3) and (4) into Eq. (5) yields the condition stated in Eq. (6). It is noted that the quantity 
∆𝛷𝛷charge corresponds to the storage capacity as defined by Reynders [39], which represents the 
amount of heat that can be stored in the thermal mass given the boundary conditions without violating 
thermal comfort. 

𝑓𝑓charge ∙ � �𝛷𝛷DR[𝜏𝜏] −𝛷𝛷ref[𝜏𝜏]�
𝜏𝜏charge

𝜏𝜏=1

∙ ∆𝜏𝜏 
�������������������

 

∆𝛷𝛷charge

 +  𝑓𝑓discharge ∙ � �𝛷𝛷DR[𝜏𝜏] −𝛷𝛷ref[𝜏𝜏]� ∙ ∆𝜏𝜏 
𝜏𝜏discharge

𝜏𝜏=1�������������������
∆𝛷𝛷discharge

< 0 (6) 

Eq. (6) simplifies to the conditional statement given in Eq. (7). 

𝑓𝑓charge

𝑓𝑓discharge <  
−∆𝛷𝛷discharge

∆𝛷𝛷charge  (7) 

The ratio between the discharged and charged heat on the right side of the inequality sign corresponds 
to the storing efficiency, defined by Le Dréau and Heiselberg [30], as stated in Eq. (8). 

𝜂𝜂shifting =  
−∆𝛷𝛷discharge

∆𝛷𝛷charge  (8) 

Inserting Eq. (8) into (7) gives the condition stated in Eq. (9) which describes the relationship 
between the thermal building characteristics, in the form of the shifting efficiency, and the variations 
in the cost signal. The condition demonstrates that a larger ratio between 𝑓𝑓chargeand 𝑓𝑓discharge entails 
a lower acceptable 𝜂𝜂shifting.  

𝜂𝜂shifting >  
𝑓𝑓charge

𝑓𝑓discharge (9) 
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Inserting the definitions of ∆𝛷𝛷charge and ∆𝛷𝛷discharge from Eq. (6) into Eq. (8) gives the definition of 
the building-specific characteristic 𝜂𝜂shifting  as stated in Eq. (10) [30]. This definition highlights that 
𝜂𝜂shifting depends on both the magnitude of the difference of heating consumption and the durations 
𝜏𝜏charge and 𝜏𝜏discharge, which may both differ for each DR event. 

𝜂𝜂shifting =  
−∑ �𝛷𝛷DR[𝜏𝜏]−𝛷𝛷ref[𝜏𝜏]�𝜏𝜏discharge

𝜏𝜏=1 ∙ ∆𝜏𝜏
∑ (𝛷𝛷DR[𝜏𝜏] −𝛷𝛷ref[𝜏𝜏])𝜏𝜏charge
𝜏𝜏=1 ∙ ∆𝜏𝜏

 (10) 

Let us now consider two scenarios: 

Scenario #1: 𝜂𝜂shifting = 1 (a utopia scenario), i.e. it possible to discharge the entire amount of heat 
stored in the thermal mass as stated in Eq. (11). When inspecting Eq. (9), this scenario implies that 
even the smallest variations in the cost signal would be sufficient to enable non-dispatchable DR 
programs, given that 𝑓𝑓charge < 𝑓𝑓discharge.  

∆𝛷𝛷charge =  −∆𝛷𝛷discharge (11) 

Scenario #2: 𝜂𝜂shifting < 1, i.e. a certain amount of the charged heat is lost to the ambient surroundings, 
thus it is not possible to discharge the entire amount of stored heat, as specified in Eq. (12). 

∆𝛷𝛷charge =  −∆𝛷𝛷discharge +𝛷𝛷loss (12) 

Inserting Eq. (12) into Eq. (8) gives the definition of 𝜂𝜂shifting as specified in Eq. (13). 

𝜂𝜂shifting =  
∆𝛷𝛷charge −𝛷𝛷loss

∆𝛷𝛷charge  (13) 

Eq. (13) simplifies to Eq. (14) which states that 𝜂𝜂shifting depends on the ratio between the magnitude 
of lost and stored heat, which are often conflicting. For instance, a building with an energy-efficient 
building envelope and corresponding low heat loss coefficient would have a low storage capacity 
∆𝛷𝛷charge because of the generally limited space heating demand. On the contrary, a building with a 
higher heat loss would have a greater general space heating demand and, accordingly, a higher 
storage capacity. 

𝜂𝜂shifting =  1 −
𝛷𝛷loss

∆𝛷𝛷charge (14) 

The simplistic principle of non-dispatchable DR presented in Eqs. (1) to (14) describes the necessary 
conditions to be fulfilled. However, for real applications this is not a trivial process for several 
reasons: 

I. The cost signal is assumed to consist of time-invariant prices during the entire charging and 
discharging periods; however, this is not the case when considering dynamic RTP tariffs such 
as day-ahead whole electricity prices.  

II. The characteristic parameter 𝜂𝜂shifting is not static, but depends on the boundary conditions.  
III. The relationship between the heat loss and storage capacity as specified in Eq. (14) addresses 

the tradeoff between energy efficiency and the ability to exploit the thermal mass as heat storage. 
However, this relationship strongly depends on the time-varying boundary conditions. 

To reliably handle the abovementioned non-trivial challenges and to investigate the building during 
a longer period under time-varying boundary conditions, a dynamic assessment of demand response 
is required.  
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2.1 Demand response assessment 
Evaluating the benefits of participating in DR programs is a subject of considerable research concern, 
and also of great relevance regarding the introduction of a smartness indicator in EPBD [12]. 
Currently, significant work on this topic is taking place in the research framework of IEA EBC Annex 
67 on Energy flexible buildings [46], with the aim of developing a common flexibility classification 
method. Clauß et al. [40] conducted a comprehensive review on multiple key performance indicators 
(KPIs) used to evaluate energy flexibility and DR, and found that the choice of KPIs strongly depends 
on whether the aim is to classify the energy flexibility of a building or to develop control strategies 
to enable DR. Another key issue is to define the reference control, i.e. normal behavior. In Denmark, 
one of the most common control schemes for space heating operation is conventional proportional-
integral (PI) control. In the thesis work the reference control was, therefore, chosen as a PI controller 
constantly tracking the lower comfort bound, which constitutes the most energy-efficient control 
policy.  

The KPIs considered in this work differ between the investigations as a result of the different focuses. 
However, some of the most commonly used KPIs were absolute Δ𝛷𝛷 and relative Δ𝛷𝛷���� space heating 
difference for each time step 𝜏𝜏 during the evaluation period 𝑃𝑃 as specified in Eqs. (15) and (16). 
Furthermore, the KPIs operational cost savings ∆𝐹𝐹 and thermal comfort violations ∆𝐶𝐶, denoting the 
number of degree hours [°Ch] violating 𝑡𝑡min and 𝑡𝑡max, were taken into account as defined in Eqs. 
(17) and (18), respectively, where ∆𝜏𝜏 represents the duration between time steps. 

 Δ𝛷𝛷[𝜏𝜏] =  𝛷𝛷DR[𝜏𝜏] −𝛷𝛷ref[𝜏𝜏]          ∀𝜏𝜏 = 1, … ,𝑃𝑃 (15) 

 
Δ𝛷𝛷����[𝜏𝜏] =  

𝛷𝛷DR[𝜏𝜏] −𝛷𝛷ref[𝜏𝜏]
𝛷𝛷ref[𝜏𝜏]           ∀𝜏𝜏 = 1, … ,𝑃𝑃 (16) 

 
∆𝐹𝐹      =  �𝑓𝑓[𝜏𝜏] ∙ Δ𝛷𝛷[𝜏𝜏]

𝑃𝑃

𝜏𝜏=1

  (17) 

 
∆𝐶𝐶      =  ��max�𝑡𝑡min − 𝑡𝑡[𝜏𝜏], 0� + max(𝑡𝑡[𝜏𝜏] − 𝑡𝑡max, 0)�

𝑃𝑃

𝜏𝜏=1

∙ ∆𝜏𝜏  (18) 
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3 Model predictive control 
MPC is an optimization-based control scheme that minimizes a cost function for a finite prediction 
horizon 𝑁𝑁 to determine an optimal sequence of controllable decision variables 𝒖𝒖 [41, 43, 47-49]. The 
first input of the control sequence is implemented in the plant, and the optimization problem is solved 
again at the next discrete time step with a prediction horizon shifted one step ahead in time. This 
receding horizon approach introduces feedback, since the optimal control strategy is a function of 
the current state.  A generic formulation of a MPC scheme is given in Eqs. (19a-f):  

 
minimize
𝒖𝒖0,…,𝒖𝒖𝑁𝑁−1  

      𝐽𝐽        = � V𝜏𝜏(𝒚𝒚𝜏𝜏,𝒖𝒖𝜏𝜏)
𝑁𝑁−1

𝜏𝜏=0

 cost function (19a) 

 subject to   
 𝒙𝒙𝜏𝜏+1  = g𝜏𝜏(𝒙𝒙𝜏𝜏,𝒖𝒖𝜏𝜏 ,𝒅𝒅𝜏𝜏) dynamics (19b) 
 𝒚𝒚𝜏𝜏      = h(𝒙𝒙𝜏𝜏) outputs (19c) 
 𝒙𝒙0      = 𝒙𝒙 current states (19d) 
 𝒖𝒖𝜏𝜏      ∈ 𝒰𝒰𝜏𝜏 decision variable constraints (19e) 
 𝒚𝒚𝜏𝜏      ∈ 𝒴𝒴𝜏𝜏 output constraints (19f) 

where 𝐽𝐽 is the total objective value and V𝜏𝜏 denotes the cost function at time step 𝜏𝜏 ∈ ℕ, which is a 
function of the outputs 𝒚𝒚𝜏𝜏 ∈ ℝ𝑛𝑛𝑦𝑦 and decision variables 𝒖𝒖𝜏𝜏 ∈ ℝ𝑛𝑛𝑢𝑢  . The function g𝜏𝜏 represents the 
time-dependent control-model that describes the plant dynamics as a function of the states 𝒙𝒙𝜏𝜏 ∈ ℝ𝑛𝑛𝑥𝑥, 
𝒖𝒖𝜏𝜏 and uncontrollable disturbances 𝒅𝒅𝜏𝜏 ∈ ℝ𝑛𝑛𝑑𝑑. The function h maps 𝒙𝒙𝜏𝜏 to 𝒚𝒚𝜏𝜏. Measurements of the 
current states 𝒙𝒙 are used as initial states 𝒙𝒙0. Furthermore, the decision variables and outputs are 
restricted by the constraint sets 𝒰𝒰𝜏𝜏 and 𝒴𝒴𝜏𝜏, respectively. The length of the finite prediction horizon 
𝑁𝑁 depends on the cost function and process dynamics; however, multiple studies have suggested the 
use of a sufficiently long 𝑁𝑁 to ensure stability of MPC in practice [50, 51].  

The generic MPC formulation is applicable for control of a wide range of processes. However, in the 
remainder of this thesis work the following definitions are introduced: The controllable decision 
variables 𝒖𝒖𝜏𝜏 are space heating control inputs and the constraint set 𝒰𝒰𝜏𝜏 is given by the physical 
limitations of the heating system. The output variables 𝒚𝒚𝜏𝜏 are the indoor air temperatures, which are 
constrained by thermal comfort requirements 𝒴𝒴𝜏𝜏. The functions V𝜏𝜏, g𝜏𝜏 and h are elaborated in 
sections 3.1 and 3.2, and the constraint sets are elaborated in section 3.3. 

3.1 Cost function 
The cost function describes the desired objective and can be tailored to various performance targets, 
e.g. maximizing thermal comfort, minimizing energy consumption or minimizing operational cost. 
Preferably, convex cost functions are formulated, e.g. linear and quadratic functions, since they can 
be solved very efficiently and reliably [45].  

Several approaches exist to maximize thermal comfort. Morales-Valdés et al. [52] suggested a 
nonlinear cost function expressing Fanger’s predicted mean vote (PMV) index or predicted 
percentage dissatisfied (PPD) index [53]. However, there are, in general, no effective methods for 
solving a nonlinear optimization problem [45]. Therefore, Cigler et al. [54] proposed a convex 
approximation of the PMV index. Nonetheless, the PMV index relies on comprehensive 
measurements of air speed, relative humidity and the mean radiant temperature together with 
assumptions on clothing level and metabolic rate.  
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Instead, traditional reference tracking control of a preferred setpoint temperature 𝒚𝒚𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 is a favored 
approach to ensure thermal comfort. The objective is to minimize the square of setpoint deviations, 
thus penalizing larger deviations the most, as specified in the quadratic cost function in Eq. (20), 
where 𝐈𝐈 ∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑦𝑦 is an identity matrix. 

V𝜏𝜏(𝒚𝒚𝜏𝜏,𝒖𝒖𝜏𝜏) =  (𝒚𝒚𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 − 𝒚𝒚𝜏𝜏)𝑇𝑇 ∙ 𝐈𝐈 ∙ (𝒚𝒚𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 − 𝒚𝒚𝜏𝜏) (20) 

To minimize the sum of a quantity, e.g. energy consumption or operational cost, linear cost functions 
are more suitable, as given in Eq. (21) with cost signal 𝒇𝒇 ∈ ℝ𝑛𝑛𝑢𝑢. When 𝒇𝒇 is constant, the sole 
objective is to minimize 𝒖𝒖𝜏𝜏, i.e. the total energy use. On the contrary, using RTP tariffs as a time-
varying 𝒇𝒇 serves as weights of 𝒖𝒖𝜏𝜏 between time steps and the objective is consequently to minimize 
the total operational cost – often denoted economic MPC (E-MPC).  

V𝜏𝜏(𝒚𝒚𝜏𝜏,𝒖𝒖𝜏𝜏) =  𝒇𝒇𝜏𝜏𝑇𝑇 ∙ 𝒖𝒖𝜏𝜏 (21) 

Exploiting the thermal mass as heat storage inherently relies on modulations of the air temperature, 
suggesting that the cost functions in Eqs. (20) and (21) are conflicting, i.e. there is generally no 
unique solution that optimizes both simultaneously. Therefore, a useful definition is that of non-
dominated Pareto optimal solutions that are equally acceptable from a mathematical point of view 
and, consequently, form a Pareto front [55, 56]. The simplest method to obtain a Pareto optimal 
solution is the weighted sum approach, i.e. a convex combination of the two cost functions as given 
in Eq. (22) [57].   

V𝜏𝜏(𝒚𝒚𝜏𝜏,𝒖𝒖𝜏𝜏) =  𝜆𝜆 ∙ (𝒚𝒚𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 − 𝒚𝒚𝜏𝜏)𝑇𝑇 ∙ 𝐐𝐐 ∙ (𝒚𝒚𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 − 𝒚𝒚𝜏𝜏) + (1 − 𝜆𝜆) ∙ 𝒇𝒇𝜏𝜏𝑇𝑇 ∙ 𝒖𝒖𝜏𝜏,            𝜆𝜆 ∈ [0,1] (22) 

The performance of the weighted sum approach significantly depends on the choice of 𝜆𝜆, which can 
be difficult to choose since thermal comfort has no direct economic translation in residential 
buildings3. Thus, in the majority of the thesis work 𝜆𝜆 = 0 was chosen; however, this choice was 
investigated in detail in paper [P5].  

3.2 Control model 
An indispensable component of MPC schemes is the control-model, given by the function g𝜏𝜏, which 
describes the dynamics of the system to be controlled. The aim of g𝜏𝜏 is to sufficiently represent the 
dynamics in a form readily applicable for control and optimization. In general, three modeling 
approaches exist to derive such simplified reduced-order (resistance-capacitance) models, depending 
on the balance between use of measurement data and prior physical knowledge: 

I. Data-driven black-box models where methods from the field of system identification and 
measured data are used to identify the inputs-outputs relation. 

II. First principle white-box models where (simplified) fundamental heat-balance equations, 
detailed building information and detailed material properties are used to form the model.  

III. Grey-box models start from a physics-based model structure but rely on measured data to 
estimate physically interpretable parameters using system identification techniques.  

The choice of modeling approach for MPC depends on multiple factors, which fall outside the scope 
of this thesis, but the reader is referred to, for example, [58-62]. In this thesis work, a grey-box 
modeling approach was chosen since such models are expected to be more robust towards changes 
in operating conditions. Furthermore, two central model characteristics regarding the control-model 
g𝜏𝜏 were assumed. Firstly, the model was assumed to be time-invariant, i.e. model parameters were 
static. Secondly, in relation to the previously mentioned desire for convex optimization problems, 
the control-model was assumed to be linear, thus approximating any nonlinear building phenomena. 
                                                      
3 In industrial and office buildings, the objective of productivity could be used as economic translation.  
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The resulting state space formulation of g to describe the thermodynamics in buildings is given in 
Eq. (23) with state matrix 𝐀𝐀 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑥𝑥, input matrix 𝐁𝐁 ∈ ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑢𝑢 and disturbance matrix 𝐄𝐄 ∈
ℝ𝑛𝑛𝑥𝑥×𝑛𝑛𝑑𝑑. The control-model was estimated in continuous time and then discretized using the zero-
order hold method. 

𝒙𝒙𝜏𝜏+1 = 𝐀𝐀 ∙ 𝒙𝒙𝜏𝜏 + 𝐁𝐁 ∙ 𝒖𝒖𝜏𝜏 + 𝐄𝐄 ∙ 𝒅𝒅𝜏𝜏 (23) 

The function h maps 𝒙𝒙𝜏𝜏 to 𝒚𝒚𝜏𝜏 as given in Eq. (24) with output matrix 𝐂𝐂 ∈ ℝ𝑛𝑛𝑦𝑦×𝑛𝑛𝑥𝑥.  

𝒚𝒚𝜏𝜏 = 𝐂𝐂 ∙ 𝒙𝒙𝜏𝜏 (24) 

Current measurements of the room air temperatures 𝒚𝒚𝜏𝜏meas at each time step 𝜏𝜏, were used to correct 
the states predicted at previous time step 𝒙𝒙𝜏𝜏|𝜏𝜏−1 using a Kalman filter to update the observed and 
unobserved states according to Eq. (25), where 𝐾𝐾𝐾𝐾 is the Kalman gain [63]. 

𝒙𝒙𝜏𝜏|𝜏𝜏 = 𝒙𝒙𝜏𝜏|𝜏𝜏−1 + 𝐾𝐾𝐾𝐾 ∙ �𝒚𝒚𝜏𝜏meas − 𝐂𝐂 ∙ 𝒙𝒙𝜏𝜏|𝜏𝜏−1� (25) 

3.3 Constraints  
The space heating control inputs 𝒖𝒖𝜏𝜏 were restricted by the physical limitations of the heating system 
as specified in Eq. (26). Since only heating was considered, the minimum power was 0 and 𝒖𝒖max 
specifies the maximum power. 

0 ≤ 𝒖𝒖𝜏𝜏 ≤ 𝒖𝒖max (26) 

The indoor air temperatures 𝒚𝒚𝜏𝜏 were restricted according to Eq. (27), by the time-invariant lower and 
upper comfort bounds 𝒕𝒕min and 𝒕𝒕max, respectively. Since the potential for exploiting the structural 
thermal storage is a function of the allowable temperature modulations, the values of 𝒕𝒕min and 𝒕𝒕max 
vary between studies. In general, the size of the comfort band can be perceived as a measure of the 
willingness to provide DR.  

𝒕𝒕min ≤ 𝒚𝒚𝜏𝜏 ≤ 𝒕𝒕max  (27) 

Another important restriction with respect to temperature modulations is the rate of change as 
specified in Eq. (28), restricting the minimum and maximum rate of change ∆𝒕𝒕min and ∆𝒕𝒕max, 
respectively. As suggested by ASHRAE [64], the values of ∆𝒕𝒕min and ∆𝒕𝒕max depend on the duration 
between times steps given by ∆𝜏𝜏. 

∆𝒕𝒕min ≤
 𝒚𝒚𝜏𝜏− 𝒚𝒚𝜏𝜏−1

∆𝜏𝜏
≤ ∆𝒕𝒕max  (28) 

The control input constraints given by Eq. (26) were implemented as hard constraints. However, to 
ensure the feasibility of the MPC scheme, the output constraints given by Eqs. (27) and (28) were 
softened by introducing non-negative slack variables, thus transforming the inequality constraints to 
equality constraints [45, 47]. Moreover, the introduction of slack variables allowed for different 
penalty weights of violating 𝒕𝒕min, 𝒕𝒕max, ∆𝒕𝒕min and ∆𝒕𝒕max, respectively.
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4 Part I - Potential 
The objective of Part I was to examine the ability and theoretical benefits of residential buildings 
participating in non-dispatchable DR programs, using an E-MPC scheme with the objective of 
minimizing operational costs. Parts I and II relied on simulation-based case studies, which, compared 
to laboratory or field experiments, are better suited for developing and evaluating an immature 
technology, as they allow for rapid and repetitive performance assessments under similar controllable 
boundary conditions. Historical data of power production, trading activities, and prices from the day-
ahead and intraday wholesale power markets were acquired for bidding area DK1 through the Danish 
TSO, Energinet.dk and power market Nord Pool. The simulations were performed for ten apartments 
that constitute the third floor of an existing multi-story apartment building and eight retrofit scenarios 
thereof, see Table 1.  

Table 1. Case buildings notation and total reference space heating consumption during the 4-month  
simulation period. See paper [P2] for detailed explanation of the retrofit scenarios. 

Case building Reference space 
heating consumption 

Existing building (R0) 59.9 kWh/m2 
Retrofit scenario 1 (R1) 28.1 kWh/m2 
Retrofit scenario 2 (R2) 25.0 kWh/m2 
Retrofit scenario 3 (R3) 27.3 kWh/m2 
Retrofit scenario 4 (R4) 24.0 kWh/m2 
Retrofit scenario 5 (R5) 23.0 kWh/m2 
Retrofit scenario 6 (R6) 19.8 kWh/m2 
Retrofit scenario 7 (R7) 22.0 kWh/m2 
Retrofit scenario 8 (R8) 18.6 kWh/m2 

The focus of the work reported in paper [P2] was to evaluate the benefits of residential buildings 
participating in non-dispatchable DR programs, both in terms of the benefits for the private 
householders and for the energy system. For this purpose, a cost signal consisting of time-varying 
weights of historical day-ahead market prices, grid load, CO2 intensity and wind power production 
was generated, as proposed in [S4]. Using this cost signal in the associated E-MPC scheme led to 
operational cost savings for the end-user of up to 6% while simultaneously reducing CO2 emissions 
related to the energy production by up to 3%.  

Furthermore, the ability to simultaneously shift heating consumption from peak load periods was 
evaluated. Therefore, each hour of the simulation period 𝑃𝑃 was categorized based on historical grid 
load data as either a low (below the first quantile), high (between the first and third quantile) or peak 
(above the third quantile) load period, i.e. 𝑠𝑠[𝜏𝜏] = 1, 𝑠𝑠[𝜏𝜏] = 2 or 𝑠𝑠[𝜏𝜏] = 3, respectively. The absolute 
and relative shift of space heating consumption was determined according to Eqs. (29) and (30), 
where  Δ𝛷𝛷 is defined by Eq. (15).  

 
Δ𝛹𝛹[𝑗𝑗] =  �Δ𝛷𝛷[𝜏𝜏] ∙ 𝜋𝜋[𝜏𝜏]

𝑃𝑃

𝜏𝜏=1

                        ∀𝑗𝑗 = 1, 2 ,3 (29) 

 
Δ𝛹𝛹����[𝑗𝑗] =  

Δ𝛹𝛹[𝑗𝑗]
∑ 𝛷𝛷ref[𝜏𝜏] ∙ 𝜋𝜋[𝜏𝜏]𝑃𝑃
𝜏𝜏=1

                    ∀𝑗𝑗 = 1, 2 ,3 (30) 

 where 𝜋𝜋[𝜏𝜏] = � 1      𝑠𝑠[𝜏𝜏] = 𝑗𝑗  
 0      otherwise
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The achieved results are depicted in Fig. 4. Compared to the reference controller, applying the E-
MPC scheme in case buildings R1 to R8 consistently reduced space heating consumption in peak 
and high load periods with around 2.2 kWh/m2 and 1.2 kWh/m2, respectively, while consumption in 
low load periods increased by approx. 4.5 kWh/m2. In fact, Δ𝛹𝛹 was consistent even though the 
storage capacity ∆𝛷𝛷charge decreased with the extent of retrofit measures [39]. The reason for this 
consistency is, as stated in Eq. (14), that the efficiency 𝜂𝜂shifting depends on the time-varying ratio 
between ∆𝛷𝛷charge and 𝛷𝛷loss. Therefore, despite of a lower ∆𝛷𝛷charge the applied retrofit measures led 
to an increased 𝜂𝜂shifting, which allowed for a lower ratio between low and high prices as given by the 
conditional statement in Eq. (9). Inspecting the simulation results in detail showed precisely that an 
increased energy efficiency, as a consequence of the retrofit measures, resulted in a higher number 
of DR events. Because of the generally lower reference consumption in each retrofit scenario, Δ𝛹𝛹���� 
increased with the extent of retrofit measures, thus confirming the increasing 𝜂𝜂shifting. 

 
Fig. 4. Absolute and relative shift of space heating consumption [P2]. 

The same tendencies was observed in paper [P7] where day-ahead market prices were used together 
with an E-MPC scheme to minimize operational costs. One-week simulation results are depicted in 
Fig. 5. The same number of DR events was observed in case buildings R0 and R8 during the week, 
indicating that the variations in the cost signal were sufficient to enable DR events in both case 
buildings. The week was divided into six DR events, each consisting of a charging 𝜏𝜏charge and 
discharging 𝜏𝜏discharge period. In contrast to previous studies on this subject [30, 39], the duration of 
𝜏𝜏charge and 𝜏𝜏discharge for each event was optimized by the E-MPC scheme. Fig. 5 shows that R0 
allowed for the highest magnitude of consumption shift due to the generally higher reference 
consumption, while R8 allowed for shifts over longer periods. Further inspection of the simulation 
results indicated that R8 allowed for complete space heating shut-off for extended periods, while R0 
was incapable of maintaining thermal comfort without space heating consumption. 
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Fig. 5. Absolute shifting potential for the existing and retrofitted building [P7]. 

Table 2 lists the storage capacity ∆𝛷𝛷charge, discharging capacity ∆𝛷𝛷discharge and the resulting 
efficiency 𝜂𝜂shifting for each DR event. As expected, ∆𝛷𝛷charge was highest for the existing building, 
while 𝜂𝜂shifting was highest for the retrofitted building. In fact, the efficiency of DR event 6 was even 
above 100%, since heat stored at previous DR events was not yet fully discharged coming into this 
DR event. 

Table 2. Summarized heating differences and storing efficiency of each event [P7]. 
Case building  ∆𝜱𝜱charge ∆𝜱𝜱discharge 𝜼𝜼shifting

 

Existing (R0) 
 

Event 1 108.1 Wh/m2 -65.4 Wh/m2   60.6% 
Event 2   86.8 Wh/m2 -52.9 Wh/m2   61.0% 
Event 3 102.8 Wh/m2 -74.3 Wh/m2   72.4% 
Event 4   79.7 Wh/m2 -57.6 Wh/m2   72.3% 
Event 5   88.5 Wh/m2 -62.5 Wh/m2   70.6% 
Event 6   79.4 Wh/m2 -60.0 Wh/m2   75.5% 

Retrofit (R8) 
 

Event 1   89.0 Wh/m2 -57.9 Wh/m2   65.1% 
Event 2   68.5 Wh/m2 -53.3 Wh/m2   77.9% 
Event 3   81.4 Wh/m2 -69.3 Wh/m2   85.1% 
Event 4   70.1 Wh/m2 -56.6 Wh/m2   80.7% 

 Event 5   71.7 Wh/m2 -57.7 Wh/m2   80.5% 
 Event 6   69.3 Wh/m2 -70.4 Wh/m2 101.5% 

While papers [P2] and [P7] aimed at non-dispatchable DR programs based on RTP tariffs with 
horizons upwards of days to store heat in the thermal mass, little is known about the ability and 
benefits of residential buildings participating in DR programs on a shorter time-scale. Therefore, the 
work reported in paper [P3] investigated whether residential buildings may benefit from day-ahead 
and intraday market prices in parallel. To accommodate this, a hieratical control structure was 
adopted. First, an E-MPC scheme considering day-ahead market (spot) prices over a 3-day prediction 
horizon was solved. Subsequently, an E-MPC scheme considering available offers on the intraday 
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market within a shorter intraday trading horizon (ITH) was solved, treating the consumption procured 
on the day-ahead market as a trade commodity. 

The simulation results, depicted in Fig. 6, showed that engaging in intraday trading increased the 
operational cost savings from 3%, 8% and 13%, to 6%, 13% and 19% in R0, R1 and R8 case 
buildings, respectively. Fig. 6 also indicates that the majority of economic benefits from intraday 
trading can be achieved considering a one-hour ITH, due to a strong correlation between intraday 
and day-ahead market prices. Furthermore, the simulation results showed that the traded volume on 
the intraday market of R0 was 12.7 kWh/m2 corresponding to approx. 21% of the reference heating 
consumption, while R1 and R8 traded 12.1 kWh/m2 (43%) and 9.6 kWh/m2 (52%), respectively. The 
achieved results therefore suggest that a wide range of buildings would benefit from participating in 
DR programs considering both day-ahead and intraday market trading. 

Fig. 6. Operational cost savings and additional heating consumption summarized for all apartments [P3].
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5 Part II - Development 
The results obtained in Part I indicated that significant benefits can be achieved by residential 
buildings participating in non-dispatchable DR programs using E-MPC to exploit the thermal mass 
as heat storage. However, the applied E-MPC scheme in Part I suffers from a range of practical 
challenges and therefore requires further development before implementation in real residential 
buildings. The objective of Part II was therefore to develop solutions to address some of these 
practical challenges. Since Part I suggested that the ability to participate in non-dispatchable DR 
depended on the thermal characteristics of the building, the case buildings listed in Table 1 also 
formed the basis for the investigations in Part II.  

5.1 Centralized or decentralized control scheme 
When designing control schemes for multi-zone buildings, centralized and decentralized control 
approaches exist, where heat transfer between adjacent zones is accounted for or neglected, 
respectively [65, 66]. Decentralized control schemes will, in theory, return a sub-optimal solution 
compared to centralized control schemes. However, decentralized control schemes may constitute a 
more practical approach for real application, since they do not require mapping of zone-adjacency or 
exchange information between controlled-zones during operation. Furthermore, decentralized 
control schemes are preferable in multi-apartment residential buildings because they allow individual 
apartment owners to specify control objectives and to decide when to engage in DR programs. The 
work reported in paper [P4] therefore investigated the performance of centralized and decentralized 
MPC as a function of the coupling degree between apartments, i.e. before and after (indicated by 
superscript +) adding 100 mm of insulation to the partition walls. 

The simulation results for each of the three control schemes (reference, centralized E-MPC and 
decentralized E-MPC) are listed in Table 3. The total operational cost, operational cost savings ∆𝐹𝐹 
(according to Eq. (17)) and relative cost savings are summarized for all ten apartments, while thermal 
comfort violations ∆𝐶𝐶 (according to Eq. (18)) are given as the mean across the ten apartments. 
Furthermore, the standard deviations are specified in the parentheses. Overall, the centralized and 
decentralized E-MPC schemes achieved similar operational cost savings; however, the standard 
deviations across the apartments indicate that applying decentralized E-MPC without insulated 
partition walls led to unevenly distributed cost savings across the apartments. This effect was 
significantly reduced in the case buildings R0+ and R8+ with insulated partition walls. Furthermore, 
decentralized E-MPC even out-performed centralized E-MPC in terms of maintaining thermal 
comfort in R0+ and R8+. 

Table 3. Simulations results for all ten apartments [P4]. 

Case building  Total 
cost 

Cost 
savings  

Relative 
cost saving 

Mean comfort 
violations 

Existing (R0) reference € 1040   89.7 (4.3) °Ch 
centralized € 1010 € 30 (0.66) 2.9% 18.1 (9.8) °Ch 
decentralized € 1011 € 29 (1.37) 2.8% 22.7 (9.4) °Ch 

Existing+ (R0+) reference € 1001   84.4 (2.9) °Ch 
centralized € 977 € 24 (0.42) 2.4% 15.9 (2.6) °Ch 
decentralized € 979 € 22 (0.50) 2.2% 11.2 (1.5) °Ch 

Retrofit (R8) reference € 327   43.9 (3.0) °Ch 
centralized € 293 € 34 (0.86) 10.4% 9.3 (8.7) °Ch 
decentralized € 293 € 34 (1.59) 10.4% 18.0 (8.7) °Ch 

Retrofit+ (R8+) reference € 323   38.5 (1.7) °Ch 
centralized € 287 € 36 (0.55) 11.1% 7.5 (3.0) °Ch 
decentralized € 287 € 36 (0.63) 11.1% 6.9 (2.2) °Ch 
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5.2 Stochastic disturbances 
The DR potentials suggested in Part I constitute a causal upper theoretical performance bound (PB) 
which, in practice, is unachievable, since the E-MPC scheme is affected by various structural 
uncertainties (i.e. building/control-model mismatch) and uncertain disturbance predictions (i.e. 
weather forecast and stochastic occupancy). Recent research has therefore focused on scenario-based 
MPC (SB-MPC) schemes [67], which take the stochastic properties of the uncertainties into 
consideration. Furthermore, SB-MPC enables probabilistic output constraints (so-called chance 
constraints), thus allowing the constraints to be violated with a small probability [68, 69].  

A key issue in applying SB-MPC is to obtain reliable detections and predictions of disturbance 
scenarios. The SB-MPC proposed in paper [P6] relied on on-site weather measurements and weather 
forecast ensembles provided by Danish Meteorological Institute (DMI). However, detecting the 
current occupancy and generating reliable predictions of occupancy are difficult because of the 
stochastic nature of humans. The aim of paper [P1] was therefore to propose a novel non-intrusive 
method to detect occupancy by applying a set of rules on the trajectory of indoor climate related 
sensor data. The detection method obtained maximum accuracies of 78% and 98% in a dorm 
apartment and a single-person office, respectively. The achieved results during a 6-day period in the 
single office are depicted in Fig. 7.  

 
Fig. 7. Ground truth and detection results using sensor data from six days at a single-person office [P1]. 

In paper [P6], the abovementioned occupancy detection method was used to obtain occupancy 
schedules for four single-person dorm apartments based on CO2 measurements. These schedules 
were then randomly combined for each of the ten apartments, assuming that the presence of 
individual occupants was independent. Predictions of occupancy were generated using a higher-order 
inhomogeneous Markov chain model, which was continually trained to adapt to changes in room 
usage.  
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The simulation results during the simulation period are given in Table 4 for the reference, three SB-
MPC schemes with a varying number of considered disturbance scenarios K and the PB (i.e. perfect 
information on disturbances), respectively. The total operational cost and operational cost savings 
∆𝐹𝐹 (according to Eq. (17)) are summarized for all ten apartments, while thermal comfort violations 
∆𝐶𝐶 (according to Eq. (18)) are given as the mean across the ten apartments. Compared to 
deterministic MPC (DMPC), i.e. K = 1, the simulation results suggested that applying SB-MPC with 
K > 1 reduced comfort violations significantly while operational cost savings were affected to a 
limited extent.  

Table 4. Summarized operational costs and mean thermal comfort violations for all ten apartments [P6]. 
Case building 

 
Operational 
cost 

Cost  
savings 

Comfort 
violations 

Comfort  
difference  

Existing (R0) reference € 534   12.2°Ch  
 SB-MPC (K=1) € 519  € 15 (2.8%) 27.1°Ch 14.9°Ch (122.1%) 
 SB-MPC (K=9) € 523  € 11 (2.1%) 15.1°Ch 2.9°Ch    (23.8%) 
 SB-MPC (K=100) € 527  €   7 (1.3%) 8.6°Ch -3.6°Ch  (-29.5%) 
 PB € 520  € 14 (2.6%) 14.0°Ch 1.8°Ch   (14.8%) 

Retrofit (R8) reference € 137   20.6°Ch  
 SB-MPC (K=1) € 115  € 22 (16.1%) 28.4°Ch 7.8°Ch   (37.9%) 
 SB-MPC (K=9) € 118  € 19 (13.9%) 20.7°Ch 0.1°Ch     (0.5%) 
 SB-MPC (K=100) € 119  € 18 (13.1%) 15.6°Ch -5.0°Ch (-24.3%) 
 PB € 116  € 21 (15.3%) 17.7°Ch -2.9°Ch (-14.1%) 

Simulation results for a 4-day period for case building R8 are depicted in Fig. 8. The results indicate 
that multiple scenarios (K = 100) on several occasions ensured compliance with 𝑡𝑡max (dashed line) 
while DMPC led to constraint violations. Inspecting the results more closely also indicated that SB-
MPC, regardless of the choice of K, did not affect the charging periods but merely the magnitude of 
the estimated storage capacity ∆𝛷𝛷charge. A practical and computationally tractable alternative to SB-
MPC could therefore be to implement DMPC as high-level control together with a low-level PI 
controller, where the latter ensures thermal comfort when the DMPC scheme 
underestimates/overestimates the uncertain disturbances. 

 
Fig. 8. Four-day simulation results of one apartment in case building R8 [P6]. 
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5.3  Ensuring thermal comfort 
Exploiting the thermal mass as heat storage to enable non-dispatchable DR inherently depends on 
modulations of the room air temperatures, and it is therefore necessary to ensure that DR benefits are 
not at the expense of violations of thermal comfort. As stated in sections 3.1 and 3.3, thermal comfort 
can be handled as an optimization objective (Eq. (20)) or as output constraints (Eqs. (27) and (28)). 
The objective of paper [P5] was therefore to provide a quantitative performance assessment in terms 
of operational cost savings and thermal comfort violations of four different MPC formulations: 

I. Single-objective:  Minimize temperature deviations from preferred temperature (Eq. (20)). 
II. Single-objective:  Minimize operational cost (Eq. (21)).  
III. Multi-objective:  Compromise solution (a special case of Eq. (22)).  
IV. Single-objective:  Minimize operational cost (Eq. (21)), but with additional output constraints. 

The resulting air temperature (solid red line) of applying the four MPC schemes and the associated 
cost signal during a one-week period are depicted in Fig. 9. While formulation I ensured a 
temperature close to the preferred temperature of 21.5°C at all times, the three other formulations 
utilized the thermal comfort band (dashed lines) to minimize the operational cost. It is difficult to 
state which of the four formulations are preferable, since the distinct cost functions and constraints 
imposed on the four MPC schemes render any direct comparison of results unfair from a 
mathematical point of view. Furthermore, it depends on whether – and how much – occupants are 
willing to deviate from their preferred air temperature to minimize operational cost. However, the 
proposed single-objective problem formulation IV introduces a parameter 𝜀𝜀max, which describes the 
maximum negative acceptable deviations from the preferred indoor air temperature, in other words, 
an indicator of their ‘DR willingness’.  

 
Fig. 9. One-week simulation results for one apartment in case building R8 [P5]. 
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5.4 Hydronic heat emitters 
The work reported in papers [P2] to [P6] makes use of electrical convective baseboard heaters that 
behave linearly. However, in buildings connected to DH networks, the typical heating systems 
consist of hydronic heat emitters, such as radiators, that are characterized by nonlinearities in their 
heat output driven by the temperature difference between the radiator and room. The objective of 
paper [P7] was therefore to investigate the effect on the DR potential when including the hydronic 
radiator dynamics, and to address the nonlinearities when applying an E-MPC scheme.  

To reliably evaluate the impact of the dynamics of a hydronic radiator, a nonlinear grey-box model 
that adequately represents the thermodynamics of a hydronic radiator was established as a system of 
nonlinear ordinary differential equations, i.e. the radiator was lumped into NS equally sized 
homogeneous horizontal sections in serial connection. The model parameters were calibrated with 
the objective of minimizing the outlet temperature residuals based on data from experiments where 
the flow rate was modulated to excite the radiator. Simulated model states and output compared to 
measurements (validation data) are depicted in the left column of Fig. 10, while histograms of the 
residuals appear in the right column. The top, middle and bottom sections refer to measurements 
taken at the first, second and third quarter of the radiator height, respectively, whereas the bottom 
chart displays the outlet temperature.  

 
Fig. 10. Simulated model states and output compared to measurements [P7]. 
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Simulations of three E-MPC setups were carried out to investigate the effect on the DR potential 
when including the hydronic radiator dynamics: 

I. Linear E-MPC controlling an electrical baseboard heater (as used in papers [P2] to [P6]). 
II. Two-level control where a linear E-MPC determined the optimal heating setpoint. This setpoint 

was then communicated to a conventional PI-controller that adjusted the water flow to the 
hydronic radiator model.  

III. Nonlinear E-MPC scheme, i.e. including the hydronic radiator when optimizing the control 
strategy.  

The resulting air temperature (solid red line) for the reference and the three E-MPC schemes during 
a one-week period are depicted in Fig. 11 together with the cost signal. Compared to the reference 
controller, all the E-MPC setups raised the air temperatures within the thermal comfort band (dashed 
lines) during low price periods to charge the thermal mass. In general, Fig. 11 indicates that the three 
E-MPC setups resulted in similar space heating strategies. This was supported by the summarized 
results, which suggested that the three E-MPC setups achieved similar operational cost savings ∆𝐹𝐹 
(according to Eq. (17)) of approx. 5% and 19% relative to the reference for case buildings R0 and 
R8, respectively. Furthermore, similar and limited levels of thermal comfort violations ∆𝐶𝐶 (according 
to Eq. (18)) for all E-MPC setups were achieved.  

 
Fig. 11. One-week simulation results of one apartment in case building R0 [P7]. 

The simulation results suggested, just as proposed in paper [P6], that the performance of a two-level 
E-MPC scheme for practical coupling of the E-MPC scheme with typical setpoint-tracking 
controllers appears to be an appropriate control setup for real applications. 
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6 Part III – Experiment 
The objective of Part III was to conduct a proof-of-concept laboratory experiment for the proposed 
E-MPC scheme developed based on experiences from Parts I and II before moving onto field 
experiments. The first task of Part III was therefore to develop the necessary hardware/software 
infrastructure to enable the laboratory experiments. However, the establishment of the experimental 
infrastructure proved to be more time-intensive and troublesome than expected; as a consequence, 
no complete and successful experiments were obtained within the time-frame of the thesis work. Part 
III of this thesis is therefore dedicated to documenting the work put into the development of an 
experimental setup to test E-MPC at Aarhus University during the thesis period. The second task was 
to obtain a few preliminary results from tests of applying the prototype E-MPC scheme, which are 
also presented here. 

6.1 Experimental setup 
The daylight laboratory at Aarhus University, located on the roof of the Navitas building (see Fig. 
13) was used as the test facility, and consists of two similar experiment rooms, a control room, a 
staircase, a hallway and a technical room as illustrated in the floor plan in Fig. 12. The floor plan 
also indicates that the window-to-floor area ratios in the experiment rooms are unrealistic compared 
to existing residential buildings. Therefore, and in order to increase the mutual comparability of the 
experiment rooms, aluminum foil was attached on the interior of the windows and skylights except 
for a minor window area on the south-facing façade. Furthermore, insulation panels were added to 
the fixed casement windows, as illustrated in Fig. 12 and depicted in Fig. 13. In addition, a number 
of bricks were stacked in each room to increase the structural capacity, as depicted in Fig. 13.  

 
Fig. 12. Floor plan of the daylight laboratory at Navitas, Aarhus University. 
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Fig. 13. Top: Satellite view of the Navitas building and the daylight laboratory facility. 

Bottom: Pictures of the insulation panels, aluminum foil and the stack of bricks. 

To estimate a grey-box control-model (as given in Eq. (23)) for each experiment room, a 4-week 
excitation experiment was carried out, where temperature setpoints of 20.5°C and 25.5°C fluctuated 
randomly on a weekly pattern. During the experiment, the mechanical ventilation was shut off to 
ease the control-model identification. Furthermore, electrical heaters were used during this excitation 
experiment due to practical issues with the hydronic heating system. Measurements of the air 
temperature 𝑦𝑦meas1 and 𝑦𝑦meas2 in the two experiment rooms, respectively, together with ambient 
weather conditions measured on the roof of the laboratory, are displayed in Fig. 14. In general, the 
temperatures in the two experiment rooms behave similarly during temperature ramp up and down 
periods. However, on days with particularly high solar gains, the temperature in experiment room 1 
occasionally exceeds 25.5°C, suggesting that experiment room 1 was more sensitive towards solar 
heat gains. The heating consumption in the two rooms during the experiment period were 22.2 
kWh/m2 and 24.3kWh/m2, respectively.  
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Fig. 14. 4-week excitation experiment data 

As illustrated in Fig. 14, the experiment period was divided in to a training and validation period. 
Data obtained during the training period were used to estimate control-model parameters by 
minimizing the multiple-step ahead prediction error, while the remaining data were used for control-
model validation. The control-models were evaluated in terms of the standard metric normalized root 
mean square error (NRMSE) as given in Eq. (31), where 𝑦𝑦meas and 𝑦𝑦� denote the time series of the 
measured data and the control-model output, respectively, and ‖∙‖ denotes the Euclidean norm.  

The control-model was formulated as a linear two-state grey-box model representing the lumped 
thermal capacity of the room air and the construction elements (a graphical representation of the 
model structure is given in paper [P2]). The control-model was estimated in continuous time and 
then discretized using the zero-order hold method with a time step of 60 seconds. The outputs of the 
final selected control-models, with a NRMSE during the validation period of 65% and 71% for 
experiment room 1 and 2, respectively, are depicted in Fig. 15.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �1−
‖𝑦𝑦meas − 𝑦𝑦�‖

‖𝑦𝑦meas − mean(𝑦𝑦meas)‖� ∙ 100 (31) 



Part III – Experiment  

30 
 

 
Fig. 15. Measurements and control-model output during the validation period. 

The implemented prototype MPC scheme corresponded to E-MPC setup II as suggested in paper 
[P7], which is illustrated as a block diagram in Fig. 16. A linear E-MPC scheme based on the 
abovementioned control-models determines an optimal heating setpoint 𝑦𝑦𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 at each time step 𝜏𝜏, 
constrained according to Eq. (27) by the time-invariant bounds 𝑡𝑡min and 𝑡𝑡max of 20°C and 26°C, 
respectively. A conventional PI-loop then adjusts the valve opening 𝜃𝜃𝜏𝜏 and a driver consequently 
adjusts the water flow 𝑞𝑞𝜏𝜏 to the hydronic radiator to achieve 𝑦𝑦𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠. The heat delivered to the room and 
the air temperature denoted 𝛷𝛷𝜏𝜏 and 𝑦𝑦𝜏𝜏, respectively, are measured and returned to the MPC scheme, 
thus introducing feedback. Disturbances 𝒅𝒅𝜏𝜏 acting on the room, i.e. outdoor temperature and global 
solar radiation, are likewise measured and returned to the E-MPC scheme. Furthermore, weather 
forecast provided by DMI of the disturbances and the cost signal 𝒇𝒇 for the prediction horizon 𝑁𝑁 are 
communicated to the E-MPC scheme. 

 
Fig. 16. Block diagram of implemented prototype E-MPC setup. 

Meter 

E-MPC 
Loop  
(PI) Radiator 

Disturbances 

Driver 

Sensor 

− 
+ Room 

Sensor 

Weather 
forecast 

Cost 
signal 

𝑒𝑒𝜏𝜏 𝑦𝑦𝜏𝜏𝑚𝑚𝑚𝑚𝑠𝑠 𝜃𝜃𝜏𝜏 𝑞𝑞𝜏𝜏 𝛷𝛷𝜏𝜏 𝑦𝑦𝜏𝜏 

𝒅𝒅𝜏𝜏 

𝑦𝑦𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝛷𝛷𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

𝒅𝒅𝜏𝜏
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 



Part III – Experiment  

 31 
 

6.2 E-MPC results 
Measurements of the air temperatures, heating power and ambient disturbances during a 6-day period 
are depicted in Fig. 17. The heating power 𝛷𝛷𝜏𝜏meas was calculated as the change in energy of the water 
according to Eq. (32), based on measurements of the accumulated flow since previous time step 
denoted 𝑞𝑞𝜏𝜏 and the instantaneous supply and return temperature referred to as 𝑡𝑡𝜏𝜏

supply and 𝑡𝑡𝜏𝜏return, 
respectively.  The specific heat capacity and density of the water are denoted 𝑐𝑐𝑝𝑝water and 𝜌𝜌water, 
respectively. 

The prototype E-MPC scheme was applied in experiment room 2 while the reference control 
constantly tracking 𝑡𝑡minwas applied in experiment room 1. As previously mentioned, the experiment 
rooms are very sensitive towards solar heat gains, which was also shown on two occasions where the 
air temperature significantly exceeded 𝑡𝑡max while the heating power was 0W. The small oscillations 
of the air temperature were due to delays in the hydronic heating system, tuning of PI gains and 
building/control-model mismatch.  

 
Fig. 17. Measurements obtained during a 6-day period. 

 

  

𝛷𝛷𝜏𝜏meas = 𝑐𝑐𝑝𝑝water ∙ 𝜌𝜌water ∙ 𝑞𝑞𝜏𝜏 ∙ �𝑡𝑡𝜏𝜏
supply − 𝑡𝑡𝜏𝜏return� (32) 
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The objective of the MPC scheme was to minimize heating consumption in high price periods 
(marked with grey), by increasing the air temperature during low price periods and, consequently, 
charge the thermal mass. The achieved results are listed in Table 5, where the heating consumption 
during the 6-day period is summarized for the two experiment rooms. Compared to the difference in 
heating consumption during the excitation experiment, the results show a significant difference in 
total heating consumption 𝛷𝛷 between the two experiment rooms when using the hydronic heating 
systems. An obvious reason is the application of the E-MPC scheme; however, another important 
factor is the uninsulated pipe lengths between the radiators and the valves (where the meters 
measuring 𝑡𝑡𝜏𝜏

supply and 𝑡𝑡𝜏𝜏return are mounted), see Fig. 12. In fact, a difference of approx. 2°C between 
the measured supply and return temperature difference at the meter and radiator was observed in 
experiment room 2. Thus, the quantity 𝛷𝛷∗ approximates this observation by constantly subtracting 
2°C from the measured supply temperature to experiment room 2. The variables 𝛷𝛷�high and 𝛷𝛷�low 
specifies the relative amount of 𝛷𝛷 that was consumed during high and low price periods, respectively.  

Table 5. Summarized experiment results. 
 𝜱𝜱  𝜱𝜱∗ 𝜱𝜱� high 𝜱𝜱� low 
Experiment room 1 (reference control) 1.4kWh/m2 1.4kWh/m2 54.5% 45.5% 
Experiment room 2 (two-level E-MPC scheme) 2.9kWh/m2 1.9kWh/m2 26.4% 73.6% 

 

 

 

 



Conclusions  

 33 
 

7 Conclusions 
This thesis reported on the potential and development of a reliable economic model predictive control 
scheme suitable for real application in residential buildings to enable non-dispatchable demand 
response programs for space heating consumption in the heating-dominated climate of Denmark. The 
focus was on its application in existing residential buildings facing retrofits and any trade-off 
between energy efficiency and ability to participate in non-dispatchable demand response programs. 
The main contributions of the thesis work were structured into three parts based on extracts of the 
scientific papers [P1-P7].  

The objective of Part I was to examine the theoretical benefits and ability of an existing residential 
buildings and eight retrofit scenarios thereof participating in non-dispatchable DR programs based 
on several simulation-based studies. The results suggest that an energy-efficient residential building 
considering time varying tariffs from the day-ahead whole power market can achieve operational 
cost savings of up to 13%, while considering intraday trading simultaneously increased the total 
operational cost savings by up to 19%. The absolute magnitude of the DR potentials was fairly 
consistent across the varying retrofit scenarios, whereas the relative ability to exploit the thermal 
mass as heat storage depended significantly on the thermal characteristics of the building and, 
consequently, the storing efficiency. Moreover, non-dispatchable demand response enabled 
significant benefits for the energy systems, for example, reductions of CO2 emissions associated with 
the power production of up to 3% while at the same time reducing space heating consumption in 
peak periods by up to 50%.    

However, several practical challenges complicate the task of implementing economic model control 
schemes in residential buildings. The objective of Part II was therefore to address some of these 
practical challenges, focusing on formulating a reliable and computational tractable economic model 
predictive control scheme. Part II contains several separate investigations with multiple individual 
conclusions; however, the main findings of the different studies amount to the recommendation of a 
two-level economic model predictive control setup to obtain the overall aim of reliable operation. In 
several investigations, the two-level setup achieved the maximum benefits of participating in demand 
response programs, while ensuring thermal comfort at the same time. Moreover, the two-level 
economic model predictive control scheme builds on the typically current control scheme in 
residential buildings, thus reducing investment costs. 

The objective of Part III was to conduct a proof-of-concept laboratory experiment of a prototype of 
the two-level economic model predictive control setup, including the necessary hardware and 
technological infrastructure, to demonstrate the ability and benefits of participating in non-
dispatchable DR programs. The preliminary results suggested that the implemented prototype 
economic model predictive control scheme successfully shifted heating consumption by exploiting 
thermal mass as heat storage.  

  



Conclusions  

34 
 

7.1 Future work 
A general subject that calls for future research efforts is the definition of suitable KPIs related to non-
dispatchable demand response programs. Firstly, the assessment of demand response significantly 
depends on the definition of a reference representing normal behavior, which still needs further 
research. Secondly, non-dispatchable demand response programs can be tailored to multiple 
objectives depending on the construction of the time varying cost signal. To further highlight the 
benefits of residential buildings participating in non-dispatchable demand response, steps should be 
taken to engage various stakeholders in the energy systems to define relevant and exact objectives. 

By this time, there appear to be multiple simulation-based theoretical studies, e.g. [16, 30, 33, 39] 
and the thesis work presented in the scientific papers [P1-P7], which suggest that residential buildings 
exploiting their structural thermal storage form an excellent resource for non-dispatchable demand 
response. However, in order to definitively verify the identified theoretical potentials, many more 
reliable experimental studies are necessary. The preliminary results presented in section 6 indicated 
that buildings have the ability to shift space heating consumption; however, the proof-of-concept 
experiment gave rise to several challenges to be addressed when transitioning from simulation-based 
investigations to laboratory/field experiments, including: 

I. The task of obtaining a suitable control-model for economic model predictive control schemes 
(which was largely considered outside the scope of this thesis). It seems that different elements 
involved when obtaining an adequate control-model, for example, experiment design, amount 
and resolution of required data, modeling technique etc., constitute a significant practical 
challenge to implementing economic model predictive control in actual buildings.  

II. The role of occupants needs further research efforts. Firstly, occupant acceptance of temperature 
modulations must be investigated, since utilization of the thermal as heat storage inherently 
relies on modulations of the air temperature. These investigations must be associated with the 
discussions presented in paper [P5]. Secondly, the simulation results reported in paper [P6] 
indicated that the two-level economic model predictive scheme adequately handled stochastic 
occupancy; however, these suggestions call for verification through real experiments.  
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a b s t r a c t

Significant energy savings can be achieved by operating heating, ventilation and air conditioning con-
trollers using a feedback from sensor-based occupancy detection methods. This paper presents a novel
plug-and-play occupancy detection method based on the trajectory of various indoor climate sensor
data. Sensor data obtained from two different building zones was used to test the efficacy of the method.
For a simple test room, occupancy detection based on CO2 sensor data had the best performance with a
mean absolute error (MAE) of 2%, closely followed by PIR and volatile organic compound (VOC) with a
MAE of 3% and 4%, respectively. For a real dorm apartment with three rooms, but only one data logger,
the best performance was found when PIR was used to determine when the apartment went from
unoccupied to occupied and either VOC or CO2 sensor data was used to determine when the apartment
went from occupied to unoccupied (MAE of 22% and 26%, respectively). Compared to more complex
detection methods that require detailed information about the physical conditions of rooms or extensive
training data sets, the proposed plug-and-play method that employs simple trajectory of CO2, PIR and
VOC sensor data resulted in similar occupancy detection accuracies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Heating, ventilation and air conditioning (HVAC) systems
currently account for approximately half of the energy consumed in
buildings in developed countries [1]. It is therefore essential to
design and operate HVAC systems in an energy-efficient manner to
meet low-energy targets. The HVAC need is strongly related to the
occupancy of the building due to the air pollution and heat load
generated by human metabolism, and their use of electrical
equipment [2e5]. Conventional rule-based HVAC operation typi-
cally relies on a daily static occupancy schedule and real-time
measurements of air temperature and/or CO2 concentration to
determine the HVAC need. However, several studies have sug-
gested that significant energy savings can be achieved by using
feedback from sensor-based occupancy detection when operating
HVAC systems [6e14] and lighting [15e18]. Agerval et al. [6] used
occupancy information in a rule-based HVAC control scheme and
obtained electrical energy savings of up to 16% compared to a
baseline control. Dong and Lam [10] compared a conventional set-

point schedule to an occupancy based control approach in a
simulation study, which suggested that energy savings of 18.5%
could be achieved. Labeodan et al. [16] included occupancy infor-
mation in the lighting control in an office building and achieved
energy savings of 28%. Even greater energy savings can be obtained
when applying occupancy predictions based on occupancy detec-
tion data as input to more complex control schemes, such as model
predictive control (MPC) [19e28]. For example, simulation results
of Goyal et al. [21] achieved energy savings of 50% on average when
including occupancy information in a rule-based control scheme
compared to a conventional baseline controller, but an additional
energy saving of 1e13% were achieved when using occupancy
predictions in a MPC scheme. The same tendency was demon-
strated by Oldewurtel et al. [25], where occupancy information in
an MPC scheme led to energy savings of up to approx. 34%. The
above-mentioned studies demonstrate a significant theoretical
energy-saving potential, i.e. when perfect occupancy detection and
predictions are assumed. However, simulation results of Pedersen
et al. [29] show that the accuracy of occupancy detection and
predictions affects the theoretical energy-saving potential signifi-
cantly. This calls for the development of reliable yet simple and
inexpensive real-time occupancy detection approaches to include
occupancy information when optimizing real-time HVAC* Corresponding author.
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operation.

1.1. Related work and aim of paper

Current occupancy detection approaches can be split into two
groups: image-based methods and data-based methods. Image-
based methods [30e33] rely on camera technology to detect oc-
cupancy. Zhang et al. [32] utilized the depth-frame data from a
Kinect camera to detect and track moving people 4.0 m below with
a precision of 99.7%. Petersen et al. [33] applied the same approach
with an accuracy of approx. 99% when detecting and tracking
people 2.3e3.0 m below the camera. However, installing cameras
can be perceived as a privacy violation and often represents an
additional investment and running cost to a building project. Zhao
et al. [34] obtained convincing occupancy detection in offices using
a Bayesian belief network together with information from e.g. Wi-
Fi, GPS location, chair sensor, and keyboard and mouse sensor.
However, some occupants may still consider these sensor data to be
intrusive. An inexpensive and non-intrusive alternative is to use
indoor climate data from sensors already installed in today's
buildings for other purposes than occupancy detection. Currently,
the most commonly used sensor data for occupancy detection is
data from passive infrared (PIR) sensors [20,26,35e37] which are
installed primarily for energy efficient operation of lighting. How-
ever, relying solely on PIR sensor data as a detection of occupancy is
rather uncertain since the sensors do not capture immobile occu-
pants or occupants that are outside the PIR sensor's field-of-view
[38]. Data from indoor climate sensors already used for conven-
tional HVAC control seems like another obvious basis for occupancy
detection. The carbon dioxide (CO2) level in a room is an attractive
indicator as it is a direct consequence of human presence and, to
some extent, independent of whether the occupants are moving or
not. Detecting occupant presence based on changes in CO2 level has
demonstrated acceptable accuracy in a simple study with a differ-
ence of maximum ± 50 PPM between simulated and measured
CO2-concetration for one day [38]. Using data from CO2 sensors in
conjunction with building models to solve a CO2 mass balance
equation has been applied to detect occupancy in Refs. [39e42].
Calì et al. [42] used the CO2 mass balance equation to detect
occupant presence in a two-person office room and a residential
room. Applying the proposed algorithm led to an accuracy of 88%
and 79%, respectively while it accurately detected the number of
occupants 70% and 46% of the time in the two cases, respectively.
The disadvantage of using the CO2 mass balance equation is that it
requires detailed information about the physical room conditions
(e.g. room volume, mechanical air change rate, window/door
openings, occupant CO2 production, outdoor CO2 concentration)
which can be difficult to determine and vary in time, thus making it
subject to some uncertainty.

Utilizing sensor data to establish statistical models is another
widely used approach [10,37,43e47]. For example, Rye and Moon
[46] used machine learning techniques to detect occupancy in a
controlled test-room using indoor climate sensors and energy
consumption meters, and found that the CO2 concentration yielded
the highest information gain. Jiang et al. [43] identified an occu-
pancy estimator based on CO2-measurements in an office room
occupied with up to 35 persons. Considering a tolerance in person
counting of zero and three people, the estimator achieved an ac-
curacy of 50% (mainly due the unoccupied hours) and 89%,
respectively. Data-based occupancy detection based on measure-
ments of CO2, carbon-monoxide (CO), total volatile organic com-
pounds (TVOC), small particles (PM2.5), acoustics, illumination,
PIR, temperature and relative humidity (RH) from an open-plan
office environment was reported in Refs. [10,37,44]. Correlation
between the number of occupants and sensor data ranked the

individual sensor data in terms of relative information gain, which
suggested that RH (77.65%), Acoustic (73.42%), CO2 (67.14%) and
Temperature (37.39%) yielded the largest correlation [44].
Combining features involving RH, CO2 and acoustic sensor data led
to a relative information gain of 90%. In Ref. [37] the authors
investigated three different statistical methods for the estimation
of occupancy numbers (Support Vector Machines (SVM), Artificial
Neural Networks (ANN) and Hidden Markov Models (HMM)) and
found that data from CO2 and acoustic sensors had the largest
correlation with the number of occupants. All three models had an
average accuracy of approx. 75%, however, the authors stated that
the HMM method more realistically described an occupancy pres-
ence profile compared to SVMand ANN due to its ability to discount
sudden brief changes in occupancy levels as well as maintain a
constant level during static occupancy periods. In Ref. [10] the
authors continued the work and added a Gaussian Mixture Model
(GMM) in the HMM approach. The GMMwas used to categorize the
changes of the selected features involving sensor data from
acoustic, lighting, CO2 and PIR sensors. These categorizations were
then used as observations for the HMM to estimate number of
occupants. Adding the GMM to the HMM improved the accuracy of
the combined model to between 82% and 85%.

The disadvantage of current methods for data-based occupancy
detection is that they need prior information to work in practice.
The above-mentioned methods based on physical models (mass
balance equation) require detailed a priori information about
physical conditions of each room in the building. This type of
method therefore needs to be set up manually before application.
The above-mentioned statistical models need extensive training
data and can therefore not be applied right after they are installed.
An alternative method to occupancy detection that overcomes the
practical disadvantage of the model-based approaches is the novel
plug-and-play method presented in this paper which applies a set
of rules on the trajectory of sensor data to detect occupancy. The
proposed method was tested in two long-time duration tests and
evaluated in terms of its ability to detect occupancy compared to
the ground truth.

2. Method

The proposed occupancy detection method tracks the trajectory
of sensor data and applies a set of rules to determine a probability
of occupancy. This probability is translated into a binary signal that
states whether a room is occupied or vacant based on user-defined
thresholds. Two different sets of rules are developed: one for
impulse-based sensor data (PIR and noise) and one for sensor data
governed by the mass balance equation (air temperature, relative
humidity, CO2 concentration and VOC). The following sections
explain in detail the two different sets of rules.

2.1. PIR and noise

The principle of occupancy detection based on PIR and noise
sensor signals is illustrated in Fig. 1. Let S be a sensor signal, P the
probability of occupancy and C a binary indicator of occupancy. The
PIR sensor signal in a discrete time step k (SkPIR) is considered an

indicator of occupancy if SkPIR ¼ 1, thus the room is considered

occupied (Ck
PIR ¼ 1) with probability PkPIR ¼ 1. When the noise

sensor signal Sknoise is larger than an empirically specified threshold

(Tnoise), the signal is considered to indicate occupancy (Ck
noise ¼ 1)

with Pknoise ¼ 1. The reason for Tnoise is to ensure robustness towards
background noise in the microphone. In the next discrete time step
kþ1, the probability of occupancy for each sensor data decreases
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linearly if Skþ1
PIR ¼ 0 and Skþ1

noise <Tnoise, respectively. After 30 min the

probability equals Pkþ30min
PIR ¼ 0 and Pkþ30min

noise ¼ 0. The binary state

of ‘no occupancy’ (Ckþi
PIR ¼ 0 and Ckþi

noise ¼ 0) is determined with
respect to a user-defined threshold regarding the probability (Tde-

cay), i.e CPIR ¼ 0 and Cnoise ¼ 0 after i ¼
�
1� Tdecay

�
$30 minutes.

2.2. Air temperature, humidity, CO2 and VOC

To minimize the risk of false detections due to measurement
noise and irregular air movement, it is necessary to filter the indoor
climate sensor data prior to any analysis of trajectory to smoothen
measurement spikes (see Fig. 2). The Exponential Moving Average
(EMA) filter, eq. (1), was chosen due to its computational efficiency
and causality which are important in real-time applications.

xk ¼
n

nþ 1
xk�1 þ

�
1� n

nþ 1

�
xk (1)

where xk is the EMA filtered value at time step k, xk�1 is the EMA
filtered value at time step k-1, xk is the actual sensor data value at
time step k, and n is a factor expressing the tolerated lag between

the actual sensor data and EMA filtered data in time step k. This lag
is reduced according to eq. (2) resulting in a zero lag exponential
moving average (ZLEMA), zk [48].

zk ¼ xk þ
�
xk �

�
2n

2nþ 1
xk�1 þ

�
1� 2n

2nþ 1

�
xk

��
(2)

In case of a linear trend, the ZLEMA approach eliminates the lag.
However, using this approach on a non-linear trend (which is the
case for indoor climate sensor data) only reduces the lag. When
detection state changes from ‘occupied’ to ‘unoccupied’ and vice
versa, a low value of n is preferred since the changes caused by
occupants are much greater than themeasurement noise. However,
when the measurement data is stagnating for a long consecutive
period, a large value of n is preferred since the greatest part of the
measurement changes is due to sensor noise. This makes the se-
lection of an appropriate value of n a critical task.

Fig. 2 shows that the ZLEMA filtered data corresponds better to
the actual data trajectory when having different values of n
depending on whether the indoor climate sensor data increases,
decays or stagnates. A ZLEMA filter using n ¼ 50 (approx. 4 min)
results in a highly fluctuating trajectory of the filtered data in

Fig. 1. Illustration of the principle of occupancy detection. Left: PIR sensor signals. Right: Noise sensor signals.

Fig. 2. Example of trajectory of filtered data using different lag factors in the ZLEMA filter.
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situations where the sensor data is only affected by measurement
noise (e.g. time 17.00e17.45) but results in a fast-reacting and
smooth approximation to sensor data when persons enter or leave
the room (e.g. 17.45e18.45 and 18.45e20.00, respectively). A
ZLEMA filter using n ¼ 250 (approx. 20 min) results in a smooth
trajectory of sensor data in situations where the sensor data is only
affected by measurement noise (e.g. time 17.00e17.45) but yields a
poor approximation when persons enter or leave the room
compared to n ¼ 50. A combination of the filter lags (red line in

Fig. 2) seems to be a suitable solution for eliminating measurement
noise while maintaining a trajectory of data which is similar to the
raw measurement data. The combination is based on the slopes of
the linear trends (Fig. 3(aee)) where n ¼ 250 if the slope is below a
threshold (amax) or if the slope is larger than a threshold (amin),
otherwise n ¼ 50. The thresholds amin and amax are specified
empirically for each individual sensor. Furthermore, n increases and
decreases linearly with a maximum time delay of 2 min from
n ¼ 250 to n ¼ 50 to prevent undesired leaps in the sensor data

Fig. 3. The principle of occupancy detection based on the trajectory of sensor data.
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trajectory.
Once the measured indoor climate data has been filtered, the

following approach is applied to detect occupancy. In each time
step the ZLEMA filtered data for a two and five-minute historic
period is divided into two different groups of data depending on
whether the data value in a certain time step is higher or lower than
the data value in the previous time step. The two groups for two-
minute historic periods are depicted in Fig. 3(b,d,f) and the five-
minute historic periods in Fig. 3(a,c,e). A value marked with black
indicates that the value is higher than the value in the previous
time step, and a value marked with orange indicates that the value
is lower than the value in the previous time step. Next, a linear
regression of the black and orange data groups is determined (the
black and orange lines in Fig. 3(aee) for increasing and decaying
instances, respectively) and the following set of rules is applied:

1. If both of the two-minute trends are positive (Fig. 3(b)) the
probability of occupancy is set to P ¼ 1, and consequently C ¼ 1.

2. If one of the two-minute trends is positive and the other is
negative (Fig. 3(d)), the probability of occupancy remains
unchanged.

3. If the two-minute trends and the five-minute decaying trend are
all negative (Fig. 3(e and f)), the probability of occupancy decays
linearly. The rate at which the probability decays is determined
each time rule 3 is first detected as DP ¼ t/(S0-Sref), where S0 is
the sensor signal of the first two-minute data group value and t
is the time at which the sensor reaches the reference level Sref
(pre-defined threshold, e.g. outdoor CO2 concentration). The
time t is determined by fitting an exponential regression. The
reason for considering the five-minute decaying trend is to
ensure that the decay is evolved before performing the expo-
nential fit.

The probability is translated to a binary occupancy signal, where
‘no occupancy’ is determined with respect to a user-defined
threshold (Tdecay), i.e C ¼ 0 when P � Tdecay.

2.3. Data logger

The proposed occupancy detection method relies on indoor
climate data, which may already be monitored by building man-
agement systems for other purposes than occupancy detection.
However, to be independent of whether a case building has the
required sensors installed or not, an inexpensive, mobile and non-
intrusive online data logger for collection of sensor data was
developed (Fig. 4). The data logger has sensors for measurement of
air temperature, relative humidity, CO2 concentration, total volatile
organic compounds (VOC), noise and motion detection (PIR). Be-
sides data from these six sensors, the absolutewater content (AWT)

was calculated from the temperature and relative humidity mea-
surements. The sensors were connected to an online Arduino Mega
[49] which manages the sampling from the sensors and transmits
sensor data to a MySQL database.

The temperature and humidity sensor was the AM2315 [50]
which has a minimum sampling frequency of 0.5 Hz and a
declared measurement error of ±0.1 �C and ±2% RH. The CO2 con-
centration sensor was the MG811 [51] which applies the solid
electrolyte cell principle for CO2 concentration measurements in
the range of 350 to 10.000 ppm. Alcohol and solvent vapours
(VOCs) are measured in the range of 50 to 5.000 ppm with the
semiconductor gas sensor TGS 2620 [52]. The noise measurement
was made using the omnidirectional microphone CMA-4544PF-W
[53] with an integrated adjustable amplifier. Motion detection
was detected using the prefabricated PIR motion sensor from
Adafruit [54] with adjustable sensitivity.

The AM2315 sensor was pre-calibrated by the manufacturer but
the remaining sensors requiredmanual calibration. The accuracy of
the remaining sensors therefore depends on how careful this cali-
bration is performed. However, the absolute value of the mea-
surement was not essential to the proposed method as the method
simply tracks the trajectory of the measurements, but the sensors
needed to provide a true image of the measurement process. Large
measurement error could distort this progress but themagnitude of
the measurement errors of the sensors used in this data logger was
not observed to have any practical implication on the purpose of
the proposed method.

2.4. Experimental setup

The proposed occupancy detection method was tested during
two tests to verify its performance. The first test was conducted in a
controlled test room in the Navitas building, Aarhus University,
Denmark. Secondly, a comprehensive test was performed at a
dormitory apartment. For each test case, ground truth data was
collected using the camera technology described in Ref. [33]. Sensor
data was collected in parallel to the ground truth using the data
logger described in section 2.3. The detailed setups of the cases are
described in the following sections.

2.4.1. Test room
The 1.8 � 2.8 m test room represented a single person office

with a ceiling height of 3.0 m. No surfaces were exposed to the
outdoor climate, and the room had only one entrance from a
hallway (Fig. 5). The room had balanced mechanical ventilation
with a constant air volume and a locally controllable radiator. The
ground truth camera was installed outside the room above the
entrance door and the online sensors were placed in the middle of
the room at ceiling height. This was a simple test case where the

Fig. 4. Data logger setup.
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sensor data was only affected by the occupant of this specific room,
i.e. no direct impact from weather conditions or open connections
to adjacent occupied zones. Data was logged in a period from
26.11.2015 to 04.12.2015.

2.4.2. Dorm apartment
A three-room dorm apartment, shared by two persons, with one

entrance from a hallway was selected as a second test case (Fig. 6).
The two facades with windows were the only surfaces facing the
outdoors. The apartment has mechanical ventilation with a con-
stant air volume supplied in the two individual bed rooms and
exhaust from the common bathroom, and a locally controllable
radiator in each room. The ground truth camerawas installed above
the entrance door and the online sensors were placed in the living
room at ceiling height. This was amore complex test case compared
to the test room described in section 2.4.1 because 1) the sensor
data can be affected directly by weather conditions, and 2) sensor
data was only logged in the common room adjacent to the two
individual bed rooms which might be the preferred staying zones.
Consequently, it might be difficult to use sensor data for occupancy
detection at apartment level. Data was logged in a period of 18 days
from 7 to 25 January 2015.

3. Results and discussion

The following sections present the results of the proposed
method from the two test cases. First, the mechanism is depicted

for one test day. Secondly, detections for a longer period are eval-
uated and lastly the mean absolute errors are determined for the
entire test period. The threshold Tdecay, used to convert occupancy
probability into a binary occupancy value, has to be specified
manually before operation. For the sensor data described in section
2.2, Tdecay was set to 0.8 for the simple test room, while for the
complex dorm apartment Tdecay was set to 0.6, thus leading tomore
conservative binary occupancy state changes. For the PIR and noise
sensor data, Tdecay was set to 0 for both test cases, i.e. i¼ 30min (see
section 2.1).

3.1. Detection mechanism

Fig. 7 displays the mechanism of the proposed occupancy
detection method during one day in the test room. Applying the
method to the various sensor data provides fast detection when a
person enters the room (i.e. state transition from ‘unoccupied’ to
‘occupied’). At the specific day displayed in Fig. 7, the noise, RH and
AWT led to occupancy detection before first arrival. At first arrival
at 9, a limited time-delay is observed for occupancy detection based
on sensor data from PIR (<1 min), noise (<1 min), CO2 (5 min) and
VOC (5 min), whereas temperature (17 min), RH (10 min) and AWT
(11 min) reacted much slower. Sensor data from noise and CO2
provided acceptable information on intermittent vacancy periods,
whereas the other sensors only captured one shorter vacancy
period. When the occupant left the room (i.e. state transition from
‘occupied’ to ‘unoccupied’), the detection approach based on PIR
and noise sensor data (described in section 2.1) was limited by the
assumption of a 30 min hysteresis from last signal to state transi-
tion. The time-delay detection based on CO2 (10 min), RH (12 min)
and AWT (23 min) was limited, whereas VOC (39 min) and the
room air temperature (63 min) reacted more slowly.

3.2. Occupancy detection

The binary occupancy schedules (i.e. C in Fig. 1) during a six-day
period for the test room and dorm apartment are depicted in Fig. 8
and Fig. 9, respectively. The results from the test room suggest that
under simple and controlled conditions, all indoor climate pa-
rameters are highly correlated with occupant presence. Thus using
the trajectory of the sensor data enables convincing occupancy
detection. However, detection based on relative humidity sensor
signal and AWT led to false occupancy detections during the night
between November 29 and 30. The results from the dorm apart-
ment show a significant difference between the sensor-based de-
tections. Furthermore, the results stress the challenge of measuring
sensor data in the common room, while the occupants stayed in
their individual bedrooms. This tendency is best observed by the
detections based on the PIR sensor data which detected occupancy
at the beginning and end of each stay when the occupants walked
through the common room. Fig. 9 also shows that detections based
on temperature sensor data in the dorm apartment primarily led to
‘occupancy’ state detections.

3.3. Mean absolute error

The percentage of false and true detections of the proposed
method compared to the ground truth of the test room and the
dorm apartment test case are listed in Table 1 and Table 2,
respectively. Since the evaluated occupancy schedules are binary
dichotomous sequences, each time step can be characterized as
either:

Fig. 5. Setup of test room.

Fig. 6. Geometry and setup of the dorm apartment.
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Fig. 7. Detection mechanism illustrated for a period of 24 h.

Fig. 8. Detection result from six days at the test room.

T.H. Pedersen et al. / Building and Environment 115 (2017) 147e156 153



Paper P1

46

a. False negative - єneg (i.e. ground truth state is ‘occupancy’ but
method state is ‘no occupancy’, resulting in a reduction of HVAC
systems which potentially leads to occupant discomfort)

b. False positive - єpos (i.e. method state is ‘occupancy’ but the
ground truth state is ‘no occupancy’, potentially leading to un-
necessary HVAC energy use to maintain the indoor climate)

c. True negative - tneg (i.e. method state is ‘no occupancy’ and the
ground truth state is ‘no occupancy’)

d. True positive - tpos (i.e. method state is ‘occupancy’ and the
ground truth state is ‘occupancy’).

Two controlled combinations of probability data were further
investigated: PIR & CO2 and PIR & VOC. The PIR sensor signal
determined when the room transitioned from ‘unoccupied’ (C ¼ 0)
to ‘occupied’ (C¼ 1) while the change of state to ‘unoccupied’ (C¼ 1
to C ¼ 0) was determined exclusively by the probability of occu-
pancy calculated from the CO2 or VOC sensor data, respectively.

The mean absolute error (є) was calculated as the sum of єneg
and єpos. Detections based solely on CO2 sensor data had the lowest
error (є ¼ 0.02) for the test room (Table 1). However, applying the
proposed method to PIR (є ¼ 0.03), VOC (є ¼ 0.04) and noise
(є ¼ 0.09), sensor data also yielded reliable occupancy detections,
but the detections based on noise and VOC sensor data had a small
fraction of false negative detections. The absolute water content of
the indoor air (є ¼ 0.12), derived from measurements of the tem-
perature and relative humidity, was a better indicator of occupancy
than temperature (є ¼ 0.16) and relative humidity (є ¼ 0.21) data,
but the detection error was a factor 6 higher than detections based
on CO2 sensor data. The controlled combinations did not result in
fewer errors than for CO2 data alone. The true negatives show that
the room was vacant for a large share of the time.

For the dorm apartment (Table 2), detections based solely on PIR
(є ¼ 0.46) and noise (є ¼ 0.54) sensor data yielded high detection
errors with a large fraction of false negative detections. This dem-
onstrates the limitations of PIR sensors as the reason presumably is
that occupants were in the apartment but outside the field-of-view
of the PIR sensor and too far away from the noise sensor. Applying
the proposed method to CO2 (є ¼ 0.27), VOC (є ¼ 0.25), tempera-
ture (є ¼ 0.29) and relative humidity (є ¼ 0.36), sensor data

Fig. 9. Detection result from six days during the test at the dorm apartment.

Table 1
Results test room.

False Negatives False Positives True Negatives True Positives

PIR 0.0% 2.8% 78.9% 18.3%
Noise 1.3% 7.6% 74.1% 17.0%
CO2 0.2% 1.7% 80.0% 18.1%
VOC 0.3% 4.0% 77.7% 18.0%
TEMP 0.5% 15.1% 66.6% 17.8%
RH 1.3% 19.7% 62.0% 17.0%
AWT 0.6% 11.5% 70.2% 17.7%
PIR&CO2 0.0% 2.1% 79.6% 18.3%
PIR&VOC 0.1% 4.4% 77.3% 18.2%

Table 2
Results dorm apartment.

False Negatives False Positives True Negatives True Positives

PIR 43.5% 2.8% 21.0% 32.7%
Noise 52.5% 1.9% 21.9% 17.0%
CO2 16.4% 11.0% 12.8% 59.8%
VOC 15.2% 10.1% 13.7% 61.0%
TEMP 5.4% 23.7% 0.1% 70.8%
RH 22.1% 13.9% 9.9% 54.1%
AWT 38.8% 8.4% 15.4% 37.4%
PIR&CO2 14.6% 11.3% 12.5% 61.5%
PIR&VOC 14.0% 8.2% 15.6% 62.2%
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constituted a better indicator of occupancy. Detections based on
temperature had the lowest fraction of false negative detections. As
mentioned earlier, the reason was that the proposed method
applied to the temperature data yielded very few periods of va-
cancy, also seen from the percentage of true negatives, because the
correlation between the temperature measurements and occu-
pancy is limited and also affected by disturbances like the ambient
temperature and solar radiation (see Fig. 9). The occupants that
lived in the dorm apartment often stayed for long periods; thus, the
state of ‘occupied’ was often a good guess. However, the tempera-
ture data analysis did not capture the occupants' schedules and
therefore provided very little occupancy information overall. The
controlled combinations using PIR & VOC sensor data had the
lowest detection error (є ¼ 0.22) and the controlled combinations
using PIR& CO2 slightly improved the detection based on CO2 alone
(є ¼ 0.26). This suggested that the PIR signal was the most appro-
priate probe for determining whether the state of the dorm
apartment went from ‘unoccupied’ to ‘occupied’. The VOC or CO2
sensor data was used to determine when the room transitioned
from ‘occupied’ to ‘unoccupied’ as this data was able to indicate
when occupants stayed within the apartment but not necessarily in
the room where the sensors were placed.

The results suggest that tracking the trajectory of the standalone
CO2, PIR or VOC sensor data is a good probe for determining oc-
cupancy in simple one-room zones, and applying the method on
VOC or CO2 concentration sensor data might be a good supplement
to improve occupancy detection in building zones, where occu-
pants may be in the zone but outside the field-of-view of the PIR
sensor. It is also interesting that VOC sensor data seems to be an
alternative to CO2 sensor data as a probe for determining occupancy
of building zones.

4. Conclusion

A novel plug-and-play method for occupancy detection based
on sensor data, which often is available in most buildings for other
reasons than occupancy detection, is proposed and evaluated. The
proposed method is based on a set of rules applied to the trajectory
of sensor data. Applying the proposed method using PIR, noise, CO2
and VOC concentration, relative humidity and temperature sensor
data obtained from a simple test room and a three-room dorm
apartment resulted in a maximum accuracy of 98% and 78%,
respectively. The reported accuracies are in the same range as
existing physical and statistical data based methods (reported in
section 1.1). However, contrary to existing methods, the proposed
method is immediately operational (plug-and-play) as it does not
require time-consuming gathering of detailed information about
the physical conditions of the room or the need to wait for exten-
sive training data prior to reliable operation.

Future work is needed to investigate how the method should
deal with false negative and false positive detections in practice,
and how to enable the method to detect the number of persons and
any detailed occupant behavior such as window openings.
Furthermore, exploring the sensitivity of different sensor combi-
nations and locations to improve occupancy detection in various
types of rooms constitutes future work.
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a b s t r a c t

In future and smarter energy systems, time varying energy prices enable indirect demand response (DR)
to assist the electricity supply system to meet demand. This simulation-based study investigates how
economic model predictive control (E-MPC) schemes for space heating operation can utilize the thermal
mass in an existing multi-story apartment block and eight retrofit scenarios to provide DR. The perfor-
mance of the E-MPC scheme was evaluated in terms of its ability to enable end-user cost savings, reduce
CO2 emissions and to perform load shift of the heating demand compared to a conventional PI controller.
Two E-MPC approaches were considered: centralized E-MPC where inter-zonal effects were considered
and decentralized E-MPC that neglected heat transfer between adjacent apartments. The E-MPC schemes
led to increasing cost savings (up to approx. 6%) and reduced CO2 emissions (up to approx. 3%) as a func-
tion of increasing energy efficiency of the retrofit scenarios. The absolute amount of shifted power from
peak load periods was rather consistent (approx. 2 kWh/m2 heated net area) across all retrofit scenarios
compared to the existing building. The centralized E-MPC scheme led to marginally better results than
the decentralized E-MPC. The added complexity involved in establishing a centralized E-MPC compared
to a decentralized E-MPC may therefore not be worth the effort.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Instantaneous balance between supply and demand is a manda-
tory characteristic of the electricity supply system. Today, this
balance is ensured almost exclusively by adjusting supply to meet
demand. However, sheer supply-side management (SSM) is ineffi-
cient in systems with a high penetration of intermittent renewable
energy sources (RES) such as wind turbines and photovoltaics [1].
Demand-side management (DSM) can to some extent assist supply-
side management in such systems. There are different categories
of DSM [2]. Traditionally, the most favored aspect of DSM has been
energy efficiency [3,4] but recently several studies have explored
the potential of demand response (DR), where consumers adjust
their demand to meet supply [5–9]. It has mainly been applied
by large scale industrial and commercial customers [10] but DR
programs for space heating for residential customers could also be
considered as they represents a large share of the total consump-
tion: Private households accounted for approx. 25% of the total
energy consumption in the European Union (EU) in 2011 [11] of

∗ Corresponding author.
E-mail address: thp@eng.au.dk (T.H. Pedersen).

which approx. 67% was used for space heating in the Northern and
Western regions of the EU [12].

Several studies have demonstrated DR potentials in residential
space heating operation. A simulation-based study by Acvi et al.
[13] obtained a 13% cost reduction and reduced the energy con-
sumption in peak-hours by 23.6% compared to a baseline controller
by applying real time prices (RTP) together with economic model
predictive control (E-MPC) of an AC unit in a single residence. Halv-
gaard et al. [14] investigated the performance of a residential-scale
heat pump operated by an E-MPC scheme using RTP. The control
scheme achieved 25% cost savings using hard comfort constraints
and 35% using softened constraints. Vrettos et al. [15] used day-
ahead prices in an E-MPC scheme to investigate the DR potential of a
residential building equipped with several installations for efficient
DR (heat pump, slab cooling, electrical water heater, PV and battery)
and achieved an energy consumption reduction of 20% and cost sav-
ings of 28% compared to a rule-based controller (RBC). Knudsen and
Petersen [16] applied RTP and corresponding CO2 intensity signals
to an E-MPC scheme for space heating operation in a residential
apartment and demonstrated a potential for cost savings together
with CO2 emission reductions as well as shifting consumption from
periods of peak load to low load periods.

However, to the knowledge of the authors, there have been only
a few studies on how the thermal characteristics of existing resi-

http://dx.doi.org/10.1016/j.enbuild.2017.02.035
0378-7788/© 2017 Elsevier B.V. All rights reserved.
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Table 1
Construction characteristics of the existing building.

Construction type Material Thickness Thermal Properties

Interior Wall Concrete 0.120 m � = 1.10 W/(m K) c = 920 J/(kg K)
Floor/Ceiling Wood 0.020 m � = 0.15 W/(m K) c = 1630 J/(kg K)

Insulation 0.050 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Air space 0.050 m R = 0.18 (m2 K)/W
Hollow concrete slap 0.180 m � = 1.29 W/(m K) c = 270 J/(kg K)

Exterior Wall − Facades Concrete 0.070 m � = 1.10 W/(m K) c = 920 J/(kg K)
Insulation 0.060 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Concrete 0.080 m � = 1.10 W/(m K) c = 920 J/(kg K)

Exterior Wall − Gables Concrete 0.095 m � = 1.10 W/(m K) c = 920 J/(kg K)
Insulation 0.060 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Air space 0.015 m R = 0.15 (m2 K)/W
Concrete 0.150 m � = 1.10 W/(m K) c = 920 J/(kg K)
Air space 0.015 m R = 0.15 (m2 K)/W
Insulation 0.060 m � = 0.04 W/(m K) c = 1210 J/(kg K)
Concrete 0.090 m � = 1.10 W/(m K) c = 920 J/(kg K)

Existing window Double glazing (4-12Air-4) 0.020 m Uglazing = 2.84 W/(m2 K) gglazing = 0.773
Wood frame Uframe = 1.700 W/(m2 K)

Table 2
Facade retrofit measures.

Construction name Material Thickness Thermal Properties

Facade 1 External insulation 0.125 m � = 0.036 W/(m K) c = 920 J/(kg K)
Facade 2 External insulation 0.205 m � = 0.036 W/(m K) c = 920 J/(kg K)
2-layer window Low-E glazing (4-14Ar-LowE4) 0.022 m Uglazing = 1.220 W/(m2 K) gglazing = 0.671

Wood/Alu frame Uframe = 1.700 W/(m2 K)
3-layer window Low-E glazing (4LowE-14Ar-4-14Ar-LowE4) 0.040 m Uglazing = 0.688 W/(m2 K) gglazing = 0.547

Wood/Alu frame Uframe = 1.700 W/(m2 K)

dential buildings affect DR potentials of space heating operation.
Reynders et al. [17] applied an RBC scheme to investigate the rela-
tion between energy efficiency of the building envelope and the
potential for exploiting the structural thermal storage for DR in
dwellings. Simulation results for six test cases showed that up to
40% of the stored energy was lost due to poor thermal charac-
teristics. A subsequent parametric study of the building envelope
thermal characteristics suggested that increased insulation level
and air tightness were the two most important factors to increase
the DR efficiency [18]. Upgrading the thermal performance of build-
ing envelopes of existing residential buildings in an energy system
with a high penetration of renewable energy production therefore
seems to be critical if space heating is to be used for DR.

The aim of the work reported in this paper is to contribute
with further knowledge regarding the importance of the thermal
characteristics of existing residential building envelopes on the
latent DR potentials in residential space heating. The paper reports
on a simulation-based study where centralized and decentralized
E-MPC were used to operate the space heating in eight retrofit
scenarios of an existing residential multi-story apartment block.
The E-MPC scheme was evaluated in terms of its ability to reduce
end-user cost, CO2 emission and the resulting load shift of heating
demand.

2. Method

A section of an existing apartment block was modelled in Ener-
gyPlus (EP) [19] and represents as such an actual building to be
controlled by E-MPC. The E-MPC scheme was implemented in MAT-
LAB [20] and used to operate the space heating (electrical baseload)
of the EP model through co-simulation using the Building Controls
Virtual Test Bed (BCVTB) [21,22]. The following sections provide
further information on the modelling of the test case in EP, the
building model used in the E-MPC, the E-MPC scheme and the per-
formance evaluation metrics used for performance evaluation of
the E-MPC scheme.

2.1. EnergyPlus model

The third floor of an existing four-story apartment block was
used as test case and thus modelled in EP. The EP files are provided
in ref. [23]. The block was built in 1978 and has only undergone
minor refurbishments since then. The geometry is depicted in Fig. 1
and consists of five stairwells (S) and ten apartments: one 1-room
apartment (9), four 3-room apartments (1, 3, 5 and 7) and five 4-
room apartments (2, 4, 6, 8 and 10) with east-west oriented facades
where the west oriented facades have unheated balconies (blue
boxes in Fig. 1). The stairwells and apartments were modelled as
individual thermal zones with adiabatic horizontal surfaces (floor
and roof). The stairwells were kept at a minimum temperature of
15 ◦C while the apartments had individual heating with different
set points as explained in Section 2.4.

The thermal characteristics of the existing building envelope
used in the EP model are specified in Table 1. The windows were
modelled in WINDOW [24] and imported into the EP model. The
infiltration air change rate was modelled as a constant rate of
0.5 h−1. Internal loads from people and equipment were neglected
to make the results easier to interpret. The Conduction Finite Dif-
ference algorithm in EP was used to calculate the construction heat
balances with a 60 s time step. The standard EP weather data file for
Copenhagen, Denmark was used in all simulations [25]. The simu-
lation period was November 1, 2015 to February 28, 2016, which
constitutes the coldest period of the heating season in Denmark.

To investigate the influence of the energy efficiency of the
building envelope, a range of typically used retrofit solutions for
existing Danish apartment blocks (Table 2) were combined into
eight retrofit scenarios (Table 3) with gradually increasing energy
efficiency. All scenarios were assumed to increase the air tight-
ness due to the increased focus on the importance of building air
tightness compared to when the existing building was constructed;
hence, the infiltration rate was reduced to either 0.18 h−1 or 0.1 h−1

in an attempt to investigate the effect of different retrofit ambitions.
Mechanical ventilation with heat recovery efficiency of 80% was
assumed in all retrofit scenarios to ensure a constant air change of
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Fig. 1. Test case geometry as modelled in EnergyPlus with applied apartment numbering.

Table 3
Retrofit scenarios.

External insulation Window Infiltration rate

Existing – existing 0.50 h−1

Retrofit1 0.125 m 2-layer 0.18 h−1

Retrofit2 0.125 m 2-layer 0.10 h−1

Retrofit3 0.205 m 2-layer 0.18 h−1

Retrofit4 0.205 m 2-layer 0.10 h−1

Retrofit5 0.125 m 3-layer 0.18 h−1

Retrofit6 0.125 m 3-layer 0.10 h−1

Retrofit7 0.205 m 3-layer 0.18 h−1

Retrofit8 0.205 m 3-layer 0.10 h−1

0.5 h−1 in all apartments. The retrofit measures facade 1 and facade
2 in Table 2 would, in practice, also consist of an external cladding
and other materials but the thermal characteristics of these were
neglected in the model.

2.2. Control model

A model describing the thermal dynamics of the building is
required when applying MPC schemes. In this study, the model is
defined as a discrete-time linear time-invariant system specified
on state-space form (Eq. (1a)) with state matrix A, system states
xk, input matrix B, control inputs uk, disturbance matrix E, distur-
bances dk and controlled system states yk (Eq. (1b)) with output
matrix C.

xk+1 = Axk + Buk + Edk (1a)

yk = Cxk (1b)

There are several modelling techniques for representing the
building dynamics [26] commonly categorized as white box (e.g.
[19]), grey box (e.g. [27,28]) or black box model approaches (e.g.
[29,30]). In this study, a grey box model approach was chosen as it
provides the additional possibility of identifying the actual physical
parameters of the building, e.g. the total heat loss coefficient, which
could be beneficial to document the effects of retrofits in practice.
Furthermore, grey box models are characterized by having rela-
tively low requirements in terms of the amount of data needed to
obtain them compared to the alternatives.

The model structure of the apartments was defined as a multi-
zone model as illustrated in Fig. 2 for apartment j with adjacent
apartments i, where Text is the external temperature [◦C], Qsun is
the solar heat gains [W], Qheat is the thermal energy from the space
heating system [W], T is the temperature [◦C], C is the thermal
capacity [J/K], H is the heat transfer coefficients [W/K] and sub-
scripts m, e and a represent the construction mass, ambient air and

Table 4
Average model fit-percentage compared to validation data.

Multi-zone Single-zone

Existing 84% 91%
Retrofit1 86% 88%
Retrofit2 84% 87%
Retrofit3 87% 88%
Retrofit4 85% 88%
Retrofit5 87% 85%
Retrofit6 86% 84%
Retrofit7 88% 86%
Retrofit8 87% 86%

room air, respectively. The multi-zone model can be reduced to a
set of single-zone models by setting Hinteraction = 0 throughout the
model, i.e. neglecting the inter-zonal effects.

An inherent part of grey box modelling is to make data-based
estimations of the parameters describing the thermal dynamic
characteristics of the building (C and H in Fig. 2). The parame-
ters were estimated for the multi-zone and the set of single-zone
models, respectively, based on output data from a simulated exper-
iment with a duration of 14 days (01.01.2016–14.01.2016). During
the experiment the output of the heaters were controlled to fol-
low a so-called Pseudo Random Binary Signals (PRBS) designed to
excite systems with multiple time constants [31,32]. Ten different
PRBS signals were used in the ten apartments. The output from the
first seven days of data was used for parameter estimation using
the MATLAB system identification toolbox [33,34] by minimizing
the multiple-step ahead prediction error, while the output from the
remaining seven days was used for model validation. The average
model fits (NRMSE) [35] across all zones on the validation data for
the multi-zone and single-zone model, respectively, are shown in
Table 4. The fits of the multi-zone and single-zone model are within
the same range. Differences in model fits are due to the different
parameter estimations as shown in Fig. 3.

The estimated room air capacities for the two modelling
approaches was similar, whereas the construction mass capaci-
ties differ slightly, presumably because the single-zone models
lump the effects of inter-zonal heat exchange into other parame-
ters. The complexity of one comprehensive multi-zone model also
complicates the system identification, which is seen by the greater
parameter estimation uncertainties.

When the multi-zone model is used in E-MPC as one com-
prehensive building model, the optimal control inputs for all
apartments are calculated simultaneously for each discrete time
step. This is called centralized E-MPC [36]. Using the set of
single-zone models for E-MPC, i.e. each optimal control input is
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Fig. 2. Illustration of the model structure for apartment j and adjacent apartments i.

Fig. 3. Parameter estimations and standard deviation of the thermal capacity of the room air (top) and construction mass (bottom).

determined for each zone individually, is called decentralized E-MPC
[36]. Thus, in theory, decentralized E-MPC will return a sub-optimal
control strategy compared to the centralized E-MPC due to the
neglect of inter-zonal effects. However, the decentralized control
approach may be more practical since it does not require mapping
of zone adjacency or exchange of information between controlled
zones. This paper therefore investigates the performance differ-
ences between a decentralized and centralized control approach.

2.3. Economic model predictive control

The objective of the E-MPC scheme formulated in Eqs. (2a)–(2g)
is to minimise the total operational cost for a finite prediction hori-
zon N. At each discrete time step k, measurements of the room
air temperatures are taken and the optimization problem is solved
yielding a sequence of optimal space heating control input u* [W].
The first element of u* is then applied to the space heating system

in the EP building model. At the next time-step k + 1 the optimiza-
tion problem is solved again with a prediction horizon shifted one
time-step ahead in time and with updated room air temperature
measurements. This receding horizon introduces feedback in the
control scheme [37]. The optimal sequence of control inputs u* is
constrained by the maximum heating design power Pmax (Eq. (2d))
and the value and rate of change of the room air temperatures y
(Eqs. (2e) and (2f), respectively). All of the inequality constraints
(Eqs. (2d)–(2f)) were enforced as equality constraints by intro-
ducing slack variables, which ensured that a feasible solution was
always available. Furthermore, a low-level proportional controller
is introduced in the EP model that ensures thermal comfort since
model mismatch in the E-MPC scheme could lead to thermal com-
fort violations. The prediction horizon N and the discrete time step
k were set to 3 days and 1 hour, respectively. To simplify the inter-
pretation of the results, perfect predictions of the input weight c
(Eq. (3)), in this case the electricity price and weather forecasts,
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Fig. 4. Input weight for the period of December 7–14, 2015.

Fig. 5. Partition of the daily consumption into periods of low, high and peak load for December 7–14 2015 [6](Nord Pool).

are assumed. Hence, the optimization problem forms a determin-
istic linear program (LP). The LP can be solved efficiently using the
MOSEK solver [38].

minimize
u

N∑
k=1

cT
k · uk (2a)

subject to xk+1 = Axk + Buk + Edk (2b)

yk = Cxk (2c)

0 ≤ uk ≤ Pmax (2d)

Tmin,k ≤ yk ≤ Tmax,k (2e)

�Tmin,k ≤ �yk

�t
≤ �Tmax,k (2f)

x0 = x (0) (2g)

2.4. Constraints and input weight

In this study, the control input and state constraints (Eqs.
(2d)–(2f)) are time-invariant but differ for each apartment as spec-
ified in Table 5.

The input weight vector c in Eq. (2a) is a signal designed to
transform a multi-objective optimization problem into a single-

Table 5
Specification of input and state constraints.

Zone Pmax Tmin Tmax �Tmin �Tmax

Apartment 1 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 2 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 3 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 4 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 5 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 6 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 7 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 8 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 9 50 W/m2 20 ◦C 24 ◦C −2.1 ◦C/h 2.1 ◦C/h
Apartment 10 50 W/m2 22 ◦C 26 ◦C −2.1 ◦C/h 2.1 ◦C/h

objective optimization problem [16], which is summarised in Eq.
(3).

c [k] = spot [k]

spot

· cCOM

︸ ︷︷ ︸
pCOM

+ load [k]

load

· cTRA

︸ ︷︷ ︸
pTRA

+ CO2 [k]

CO2

· cEL TAX

︸ ︷︷ ︸
pEL TAX

+ fPSO [k] · cPSO︸ ︷︷ ︸
PPSO

(3)

where k is a discrete hourly time step, spot is the hourly electric-

ity spot price, spot is the mean electricity spot price, cCOM is the
yearly average commercial tariff on electricity, load is the hourly

grid load, load is the mean grid load, cTRA is the yearly average cost
of electricity transportation through the transmission and distri-
bution grid, CO2 is the hourly CO2 intensity associated with the

electricity production, CO2 is the mean intensity and cEL TAX is the
yearly average taxes and levies. cPSO is the yearly average cost of
a Danish public service obligation (PSO) levy put on electricity use
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Fig. 6. Simulation results for apartment 7 for the existing building (top) and retrofit scenario 8 (middle) using a PI controller and E-MPC scheme, respectively, during the
period December 7–14, 2015. The bottom chart shows the energy price (input weight c) during the same period.

where fPSO is the PSO scaling factor. Approximately half of the PSO
levy covers subsidies for wind turbines as supplement to the mar-
ket price. The proposed fPSO scaling factor is constructed in such a
way that it is low in periods with low spot prices and high wind
power production.

The data used in this study for Eq. (3) are electricity spot prices,
grid load, CO2 intensity signals and wind production from Nord Pool
market data for Western Denmark during the simulation period
[39] and Danish average component tariffs for 2015 [40]. Fig. 4
depicts an example of the input weight c as defined in Eq. (3) for
the period December 7–14, 2015. The component share of the total
tariff is specified in the legend where the percentage in brackets
indicates the 2015 yearly shares.

2.5. E-MPC performance evaluation

Determining the true value of residential DR programs for the
electricity supply system is a challenge of great concern [9]. The
economic DR incentive may be limited on a household scale while
significant on a societal level [6]. In this study, the performance
of the E-MPC for residential space heating will be evaluated rela-
tive to a traditional PI controller in terms of achieved reductions
of costs and CO2 emissions as suggested by Knudsen and Petersen
[16]. This form of evaluation will provide some insights into the

value of the proposed E-MPC, but it will not provide evaluation of
other potential benefits such as the amount, time and duration of
shifted energy which may affect production patterns and societal
energy infrastructure investments. Several performance evaluation
measures have been proposed to quantify the amount of shifted
energy using active demand response [41,18]. However, quantify-
ing the time to which the load is shifted is an equally relevant aspect
of DR. A simple approach is to consider static periods of low, high
and peak load; hence, evaluate the amount of energy shifted from
peak periods to periods of low or high load [16]. In this study, the
shifted energy of the E-MPC relative to the PI controller is evalu-
ated with respect to a dynamic metric where each time step of the
simulation period is categorized as either a period of low, high or
peak load based on historical grid load data as illustrated in Fig. 5.
For each day, the hours with grid load below the 25% quantile and
above the 75% quantile were defined as low and peak load periods,
respectively. The remaining hours were characterized as high load
periods.

3. Results

To illustrate the mechanisms of the E-MPC scheme, Fig. 6 (top
and middle) depicts the temperature conditions and heating con-
sumption for apartment 7 in one week using the PI controller and
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the centralized E-MPC, respectively. Fig. 6 (top) shows results from
simulations of the existing building and Fig. 6 (middle) shows
results from the most extensive energy retrofit scenario 8 (see
Table 3 for details). In both cases, the PI controller maintained
a room air temperature near the specified minimum comfort set
point of 20 ◦C at all times, resulting in a smooth and fairly constant
heating pattern. The E-MPC scheme, however, increased the room
air temperature at times with low energy cost (Fig. 6 bottom) and
thereby exploited the thermal mass of the constructions, which
then reduced the need for space heating in the following periods
characterized by higher energy cost.

Immediate comparison of the control actions in the two build-
ings indicates that improved energy efficiency of the building
envelope increased the frequency at which load shifting was prof-
itable.

3.1. Economic and environmental assessment

The cost and CO2 emissions over the simulation period were
accumulated for each combination of the nine buildings (the exist-
ing and the eight retrofit scenarios) and the three control schemes
(PI, centralized E-MPC and decentralized E-MPC). Fig. 7 depicts
the achieved cost and emission reductions for the centralized and
decentralized E-MPC scenarios relative to the PI controller for all
simulations. Both E-MPC schemes of the existing building led to
minor cost savings while increasing CO2 emissions slightly. In all
retrofit scenarios both E-MPC schemes reduced the cost and CO2
emissions compared to the PI controller. However, the centralized
E-MPC had a marginally better performance than the decentralized
E-MPC in all scenarios.

3.2. Load shifting potential

The absolute and relative ability of the E-MPC scheme to shift
space heating consumption to low load periods as defined in Sec-
tion 2.4 is exemplified by the performance of the centralized E-MPC
in Fig. 8. Applying E-MPC on the existing building (R0) shifted

Fig. 7. Achieved cost and emission reductions for the centralized and decentralized
E-MPC schemes relative to the PI controller for all simulations. The existing building
is referred to with index 0 and the remaining numbers refer to the retrofit scenarios.

approx. 7% of the energy use away from peak load periods. For the
retrofit scenarios, the shifted load was in the range of 30–47%.

4. Discussion

A tendency of decreasing cost and CO2 emission as a function
of the increasing energy efficiency can be observed in Fig. 7, which
is a consequence of an increasing number of load shift events (as
illustrated in Fig. 6). Fig. 7 suggests that reducing the infiltration

Fig. 8. Accumulated load shift of centralized E-MPC for all retrofit scenarios compared to the baseline PI control. Top: Absolute load shift. Bottom: Relative load shift.
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air change rate was an important measure in terms of both cost
and CO2 emission reduction. The clustering of data with respect
to the two types of window glazing indicates that reducing heat
loss through windows influenced the potential. The added external
insulation was most efficient in the buildings with 3-layer glazing
since the heat loss through the envelope was a more dominating
factor in these scenarios compared to the 2-layer glazing scenarios.
While it is difficult to make a general valid ranking of the specific
measures such as increasing the air tightness or lowering the trans-
mission losses, the results show that reductions in the overall heat
loss have a significant effect on cost savings, CO2 emissions and
load shifting in a building heated by a convective radiator system.

Fig. 8 shows that the relative load shift potential of the scenarios
increased with increasing energy efficiency. This was primarily due
to the corresponding reduction of the baseline space heating con-
sumption: The absolute load shifting potential is seen to be rather
constant across all retrofit scenarios.

The simulation results indicate that the centralized E-MPC
scheme resulted in marginally better results than the decentral-
ized E-MPC. Though not investigated, it is likely that inter-zonal
effects would be less pronounced with insulated interior walls
instead of the 0.12 m massive concrete walls used in this study.
The difference in performance compared to the increased complex-
ity of centralized E-MPC and the challenge of obtaining suitable
multi-zone model suggests that decentralized E-MPC is sufficient
for many practical applications.

5. Conclusion

This paper reports on a simulation-based study of the theo-
retical potential for utilizing the thermal mass in an existing and
eight retrofit scenarios of a multi-story apartment block for demand
response enabled by E-MPC of the space heating system. The con-
trol objective was to minimize the cost of space heating for the
end-user, and performance was evaluated by comparison to a con-
ventional controller. The E-MPC was also evaluated in terms of
its ability to reduce CO2 emissions and to perform load shift of
the heating demand. Two E-MPC approaches were considered:
centralized E-MPC where inter-zonal effects were considered and
decentralized E-MPC that neglected heat transfer between adjacent
apartments.

The E-MPC schemes yielded increased cost savings (up to
approx. 6%) and reduced CO2 emissions (up to approx. 3%) as
a function of increasing energy efficiency of the retrofit scenar-
ios. The centralized E-MPC only performed marginally better than
the decentralized E-MPC, suggesting that using the more practical
decentralized approach, which does not need configuration of zone
adjacency or exchange of information between controlled zones, is
sufficient in many situations.

The simulation results also suggest that the E-MPC schemes
shifted consumption more frequently in the retrofit scenarios com-
pared to the existing building. However, the absolute amount of
shifted energy across the retrofit scenarios compared to the exist-
ing building was rather consistent. The relative amount of energy
shifted from peak periods increased slightly with increasing energy
efficiency due to the decreased baseline energy use in each retrofit
scenario.

This study used perfect predictions of disturbances (weather
and occupancy) to identify the theoretical potential of the E-MPC
scheme. Future studies should include investigations on how this
potential will be affected by uncertainties in weather forecasts and
occupancy. Furthermore, experimental verification of the demon-
strated potentials is recommended.
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a b s t r a c t

Several studies have evaluated the potential for residential buildings participating in demand response
programs based on the day-ahead electricity market prices. However, little is known about the bene-
fits of residential buildings providing demand response by engaging in trading on the intraday market.
This paper presents a simulation-based study of the performance of an economic model predictive con-
trol scheme used to enable demand response through parallel utilization of day-ahead market prices
and intraday market trading. The performance of the control scheme was evaluated by simulating ten
apartments in a residential building located in Denmark through a heating season (four months) using
historical market data. The results showed that the addition of intraday trading to the more conventional
day-ahead market price-based control problem increased the total cost savings from 2.9% to 5.6% in
the existing buildings, and 13%–19% in retrofitted buildings with higher energy-efficiency. In the existing
building the proposed control scheme traded on average 12.7 kWh/m2 on the intraday market throughout
the simulation corresponding to 21% of the reference consumption. For a retrofitted building the traded
volume was 9.6 kWh/m2 which corresponds to 52% of the reference consumption. These results suggest
that the benefits of considering intraday market trading as a demand response incentive mechanism
apply to a wide range of buildings.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the penetration of intermittent renewable energy sources
(RES) such as wind power increases, so will the uncertainty associ-
ated with electricity production prognoses because of the inherent
uncertainties of weather forecasts. This uncertainty complicates
the task of maintaining an instantaneous balance between elec-
tricity supply and demand [1,2]. A commonly suggested way of
addressing the issue of grid balancing under more volatile elec-
tricity production is the implementation of smart grids [3–6]. A
characteristic of smart grids is effective utilization of Demand
Response (DR) programs, where consumers are encouraged to
adjust their demand to meet supply and thereby increase the
overall efficiency of the energy system. Energy use in residential
buildings constitutes a significant potential for DR as it accounts
for 25% of the total energy consumption in the EU of which 67%
is used for space heating in the North and West regions of EU [7].
This flexible consumption can be activated through different types
of DR programs.

∗ Corresponding author.
E-mail address: reh@eng.au.dk (R.E. Hedegaard).

1.1. Demand response programs

DR programs are often divided into direct and indirect control
programs [4,8,9]. In direct control programs, the consumer entrusts
the energy planners and operators (PO) with direct control of their
electrical loads; the PO can change consumption pattern directly. In
indirect control programs, the consumer has full control of the elec-
trical loads and the PO can only provide incentives for consumers to
change their consumption pattern. One incentive from PO to con-
sumers is to provide time-varying energy prices, which motivates
consumers to reduce consumption in high price periods, e.g. by
shifting consumption to periods with lower prices. This approach
is referred to as indirect price-based DR programs. Previous studies
have demonstrated that residential building owners may bene-
fit from this type of DR programs. Halvgaard et al. [10] operated
a residential-scale heat pump using Economic Model Predictive
Control (E-MPC) with day-ahead prices and achieved 25–35% cost
savings compared to traditional set point control dependent on
comfort constraints. Avci et al. [11] used E-MPC to achieve a 13%
cost reduction compared to a two-position thermostatic control of
a residential heat pump, and Oldewurtel et al. [12] used MPC with a
multi-objective cost-function to reduce consumption peaks by up
to 39% and costs by 31.2%. Knudsen and Petersen [13] demonstrated
that using E-MPC for space heating can enable cost savings, CO2

http://dx.doi.org/10.1016/j.enbuild.2017.05.059
0378-7788/© 2017 Elsevier B.V. All rights reserved.
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Nomenclature

Abbreviations
DR Demand response
E-MPC Economic model predictive control
RES Renewable energy sources
PO (Energy) Planners and operators
SSM Supply-side management
TSO Transmission system operator
BRP Balance responsible party
MILP Mixed integer linear problem
ITH Intraday trading horizon
ID Intraday (market)
DA Day-ahead (market)

Symbols
x State vector of the resistance-capacitance building

model
pda Vector containing forecasted day-ahead market

prices
u∗

da
Optimal sequence of control actions with respect to
day-ahead prices

pid Vector containing prices from intraday market
trades

u*
id Optimal sequence of control actions after intraday

optimization
J* Cost of implementing the entire optimal control

strategy

emission reductions, and shift consumption from periods of peak
load to low load periods. The large spread in savings found in the
above-mentioned studies may be caused by several factors includ-
ing the magnitude of price fluctuations, how the reference case is
defined as well as the inclusion of taxes. For example, Knudsen et al.
[14] demonstrated that the economic incentive of performing DR
using E-MPC of residential space heating strongly depends on the
taxation mechanism of energy: a case study led to end-user energy
cost savings between 2% and 9% depending on the taxation. Fur-
thermore, Pedersen et al. [15] demonstrated that the cost savings
of indirect price-based DR programs using E-MPC depends on the
energy-efficiency of the building envelope and consequently the
storage efficiency, which relates the amount of energy lost during
the storage process to the amount of energy actually stored.

All of the mentioned studies use forecasts of energy prices and
weather with durations upwards of days to prepare the building
for DR by utilizing the inherent thermal inertia of the building as an
energy storage. However, previous studies have demonstrated that
buildings can also help solve grid balancing issues that arise on a
shorter time scale. Oldewurtel et al. [16] used MPC with critical peak
pricing to quantify the flexible consumption immediately avail-
able in buildings that have not been prepared to deliver flexibility,
by introducing two performance metrics: Power Shifting Potential
and Power Shifting Efficiency. De Coninck et al. [17] used MPC to
derive cost curves describing the costs associated with deviation
from optimal control strategies to activate flexibility. Both studies
conclude that the availability and associated cost of flexibility in
building space heating depend on several dynamic factors such as
the current thermal state of the building and weather conditions,
but they do not attempt to investigate whether the cost of the flexi-
bility is aligned and compatible with the current electricity markets
or incentive mechanisms. The following section describes the struc-
ture of wholesale electricity markets and clarifies why these may be
suitable for activating the DR potential in residential space heating.

1.2. Electricity markets as DR platforms

This study evaluates an indirect price-based DR program uti-
lizing two European-based wholesale electricity markets: the
day-ahead market Elspot and the intraday market Elbas. Both mar-
kets are a part of the cross-border electricity market Nord Pool. Each
participating country is divided into individual bidding areas that
reflect geographical and grid characteristics. For example, Denmark
consists of two bidding areas of which the Western Denmark region
(DK1) is characterized by a high penetration of wind power produc-
tion [18]. In 2015 the accumulated annual wind power production
constituted approximately 55% of the total annual consumption of
the DK1 region [19].

In DK1, the majority of electricity is traded on the day-ahead
market Elspot, where electricity trades confirmed upon market clo-
sure is to be delivered the following day. The market closes each
day at 12:00 CET and shortly thereafter the hourly day-ahead prices
(pda) for the following day are available to the public. The hourly
price is settled through the pay-as-clear principle in which, for
each hour, the price that balances supply and demand applies to all
electricity traded across different market regions. However, in peri-
ods where transmission lines between bidding areas are congested
(bottlenecks), a market split occurs resulting in different prices on
each side of the congestion. The physical limitations of transmission
lines thus lead to increased price fluctuations in regions with high
shares of intermittent RES such as DK1. Fig. 1 shows how high wind
power production within the region has a tendency to reduce the
DK1 day-ahead clearing prices in 2015. Furthermore, the produc-
tion from wind exceeded the regional consumption in 1442 h while
negative prices were observed in 65 h. It is these day-ahead prices
that have served as the sole price signal in many E-MPC or rule-
based studies on DR for space heating in buildings [10,12,13,20–23].

The significance of wind power production in the region for the
day-ahead market principle means that the trades depend strongly
on the accuracy of production (and consumption) prognoses. The
market therefore needs a way of correcting the already traded
quantities on the day-ahead market to be consistent with updated
production prognoses. Such corrections can be made through trad-
ing on the intraday electricity market (Elbas) which remains open
from the day-ahead market closure up until one hour before the
electricity is to be delivered. Despite the fact that trades can be
made up to 33 h before delivery, over 50% of all intraday trades
are made within the last three hours before intraday market clo-
sure as the accuracy of prognoses increase [18]. The total volumes
traded on the Elbas market are currently small, constituting only
approximately 3% of the annually sold and bought electricity on
Elspot in 2015 [19]. However, Scharff et al. [18] identified high
shares of intermittent production from RES to be a contributing
factor towards increased intraday trading.

In conventional power systems grid balancing is achieved
through supply-side management (SSM), where the transmission
system operator (TSO) hires power plants that are able to adjust
their power output to address any imbalanced operation from mar-
ket actors. In all trades on the day-ahead electricity market, one
of the actors involved with the trade assumes the role of the Bal-
ance Responsible Party (BRP). The BRP is committed to cover any
expenses of the TSO to counteract any imbalance associated with
the trade. The balancing power price is thus directly linked to
the expenses associated with balancing carried out by the TSO.
As the share of fluctuating renewable production increases, the
task of balancing the grid becomes increasingly complicated which,
consequently, increases the expenses resulting from imbalanced
operation. As the balancing expenses increase, BRPs are expected
to be more involved in intraday trading to ensure a balanced oper-
ation.
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Fig. 1. The effect of wind power production on day-ahead electricity prices in the DK1 area. Source: Nord Pool, 2015 data.

The intraday electricity market prices (pid) are settled accord-
ing to the pay-as-bid principle, which means that individual trade
prices are determined when market participants accept available
offers. Therefore, prices may vary within any given hour [18]. Fig. 2
shows the marginal price of the day-ahead market and the interval
for each hour in which trades settled on the intraday market over
a three-day period in December 2015. The average intraday price
and the day-ahead price are strongly correlated with a Pearson
correlation factor of 0.91. However, as shown in Fig. 2, signifi-
cant deviations between intraday and day-ahead prices occurred
in several hours of the depicted period.

While the day-ahead price is a product of supply and demand,
the intraday price is an indication of imbalances expected by the
BRPs themselves. BRPs with flexible buildings in their own con-
sumer portfolio may utilize this flexible demand to lower or avoid
entirely the need for intraday trading. Similarly, other actors may
use flexible consumption as a virtual power plant, offering energy
on the intraday market.

1.3. Aim of this paper

Residential building owners or aggregators may increase their
economic incentive to deliver DR to the electricity grid when mul-

tiple electricity markets are considered. A study by Ali et al. [24]
demonstrated that the charging pattern of domestic hot water
tanks can be planned taking both day-ahead market prices and
(artificial) instantaneous balancing events into consideration. It
therefore seems reasonable to assume that space heating can be
planned in a similar manner. However, to the knowledge of the
authors, there have been no reported studies on whether space
heating of residential buildings can participate in multiple DR pro-
grams using day-ahead and intraday prices simultaneously. This
study therefore investigates whether space heating can be oper-
ated to respond to both day-ahead and intraday market-driven DR
programs in parallel without compromising thermal comfort.

2. Method

The following sections introduce the proposed control scheme
capable of utilizing market conditions on the day-ahead and intra-
day market in parallel. First, Section 2.1 presents economic model
predictive control in its more conventional configuration where
only day-ahead prices are used to optimize operation of the
building. Then, Section 2.2 expands upon the control scheme by
introducing the expanded multi-market algorithm. Finally, Section

Fig. 2. Day-ahead clearing price and intraday market price-intervals (week 8, 2016).
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2.3 presents the assumptions made for a case study used to illus-
trate the performance of the proposed control method.

2.1. Economic model predictive control

Economic model predictive control solves an optimization prob-
lem to determine the optimal sequence of control actions, u, for the
space heating system by minimising the total operational cost for
a finite prediction horizon N:

minimize
u

N∑
k=1

CT
k · uk (2a)

subject to xk = Axk−1 + Buk−1 + Edk−1 (2b)

yk. = Cxk (2c)

0 ≤ uk ≤ Pmax (2d)

Tmin,k ≤ yk ≤ Tmax,k (2e)

�Tmin,k ≤ �yk

�t
≤ �Tmax,k (2f)

x0 = x (0) (2g)

where ck is the time varying price associated with control action,
uk. The thermodynamics behaviour of the building to be controlled
is described by Eqs. (2b) and (2c), and the control actions are con-
strained by the maximum design power of the space heating system
by Eq. (2d). The controlled variable is the room air temperature,
yk, whose value and rate of change are constrained by Eqs. (2e)
and (2f), respectively. Measurements are used to define the cur-
rent state of the building in Eq. (2g), where the unobservable states
are estimated using a Kalman Filter.

The model of the building thermodynamics used in this study
was a grey-box model formulated in state space form. Grey-box
models are categorised by having a predefined structure of phys-
ically meaningful parameters such as heat loss coefficients and
thermal capacities. These parameters are estimated from measure-
ment data through methods from the field of System Identification.
The model used in this study is a simple two-state model, where the
two states represent the lumped thermal capacity of the zone air
and the construction components, respectively. Forecasts of ambi-
ent temperature, solar heat gains and space heating are treated as
inputs from which the model produces a prediction of the zone air

temperature as output. A detailed description of the model struc-
ture used in this study is provided in Ref. [15].

At each discrete time step k, the states of the building model are
updated and the optimization problem is solved using the MOSEK
solver [25] resulting in a sequence of optimal space heating con-
trol inputs u∗. The output of the control scheme is thus the control
strategy that, over a predefined prediction horizon N, satisfies the
imposed constraints at the lowest operational cost. Only the first
control action of each control sequence is implemented in the
building after which a new sequence is computed at the start of
the following time step − a control principle referred to as receding
horizon control [26]. This approach allows for the control scheme to
update weather and price forecasts continuously while enabling
the use of building measurements to introduce feedback in the
control loop.

2.2. Scenario-based optimization

The control scheme in Section 2.1 was expanded to enable the
use of intraday price intervals in the optimization. A challenge in
relation to this is to prevent the control scheme from purchasing
and selling electricity within the same hour. One way of preventing
such behaviour is to implement logic in the optimization problem
that restricts the algorithm to be either in selling-mode or buying-
mode. The resulting optimization problem would be a mixed integer
linear problem (MILP) − an approach that was used in Bianchini
et al. [27] to obtain on/off control of heaters. However, as the
authors point out, MILPs are significantly more complex to solve
than linear or quadratic programs, which limits the computation-
ally tractable size of the problem. To avoid restricting the size of the
optimization problem we chose a scenario-based approach instead,
where optimization problems with different cost vectors corre-
sponding to each relevant scenario were solved individually and
then compared.

The decision making process including both the day-ahead and
intraday market can be condensed to the principle described in
Table 1. First, the optimal control strategy, u*, is computed in each
hour by solving the optimization problem defined in Eqs. (2a)–(2g)
which only consider the day-ahead prices over a three day predic-
tion horizon. While prices may not be available three days ahead,
studies have shown E-MPC to be robust to simply repeating the
price fluctuations from the first day [13]. This study assumes per-
fect price predictions for simplicity. Secondly, a shorter intraday
trading horizon (ITH) is introduced − in this study ITHs of one and

Table 1
Breakdown of the new control algorithm.
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Fig. 3. Façades of case building with numbers indicating the apartments’ number of rooms.

three hours were evaluated. Within the span of the ITH the algo-
rithm evaluates currently available offers on the intraday market.
If no offers are available, the intraday trading stage of the algo-
rithm is not activated and the building is operated solely based on
optimization using day-ahead prices. If trading offers are available
inside the ITH, the algorithm treats the consumption procured on
the day-ahead market as a trade commodity in the following intra-
day scenario optimization problems. These optimization problems
evaluate all possible combinations of purchasing additional con-
sumption or selling already procured consumption in each hour
within the ITH. The controller then implements the intraday trad-
ing strategy that yields the highest profit, which may be to either
store energy, sell part of the procured electricity back or stick to
the original day-ahead optimized control sequence. In either case,
the same comfort-related constraints used in the day-ahead opti-
mization problem apply to all intraday scenarios, meaning that the
algorithm will only sell energy in the extent that the thermal indoor
climate remain within predefined comfort boundaries. To ensure
compliance with the intraday market structure where the market
closes one hour before delivery, each control strategy is computed
one hour before implementation; hence, the strategy computed at
time t = 8:00 is implemented in the building from t = 9:00 to 10:00.

An ITH of one hour results in three optimization problems to
be solved: the initial day-ahead problem, a sell-scenario and a buy-
scenario. Expanding the ITH by one hour introduces, in addition to
the three previous scenarios, the two scenarios where electricity
is bought in the first hour and sold in the second hour, and vice-
versa. The number of scenarios and thereby optimization problems
nscenario = 1 + 2ITH to be solved in each time step increases exponen-
tially with the ITH and is consequently

However, as mentioned in Section 1.2, approximately half of all
trades are made within the last three hours before intraday mar-
ket closure. Therefore, in order to limit the number of scenarios to
evaluate, a maximum ITH of three hours was chosen in this study.

2.3. Case study

This section presents the simulation-based case study used for
demonstrating the performance of the proposed control scheme.
The building to be controlled is a four-story apartment block built
in 1978 and located in Aarhus, Denmark. An EnergyPlus [28] model
of the building serves as a representation of the actual building.
The apartment block has east-west oriented window configura-
tions and west-oriented open balconies, see Fig. 3. To simplify the
modelling and simulation process, only the third floor was inves-
tigated which is comprised of ten differently sized apartments. All
apartments were modelled as individual thermal zones with all

horizontal zone boundaries (ceiling, floor) assumed adiabatic. All
thermal zones were modelled with electrical baseboard heating
systems operated by the E-MPC control algorithm implemented
in MATLAB [29]. The maximum allowed temperature increase of
Eq. (2e) was chosen as four degrees above the set point in all apart-
ments. Furthermore, the maximum rate of change in Eq. (2f) was
specified as 2.1 ◦ per hour in accordance with ASHRAE’s recom-
mendations [30]. The link between MATLAB and EnergyPlus was
facilitated with the Building Controls Virtual Test Bed (BCVTB) [31].

The simulation period was chosen as November 1 to February
28 corresponding to the main heating season in Denmark using the
standard EnergyPlus weather data file of Copenhagen, Denmark
[32]. Historical market data of electricity production, trading and
prices (2015/16) from the day-ahead and intraday markets were
used in the simulation as forecasts for operational planning of
the building. The data was acquired through the Danish TSO,
Energinet.dk [22] and Nord Pool [33,34]. Taxation of electricity was
omitted in this study for the sake of simplicity in interpretation of
results. Consequently, results presented in absolute values cannot
be directly compared to the actual price paid by building owners.
The case study does not investigate how weather and price fore-
cast uncertainties affect the performance of the proposed control
scheme.

Detailed information on the intraday trading was not available.
The only data publicly available was the minimum, average and
maximum prices of settled intraday trades for each hour. Because
of this, optimal trading conditions were assumed, meaning that
the algorithm achieves the lowest intraday price observed while
energy is being purchased and highest when energy is sold back to
the market. Another piece of information that was unavailable was
the period during which a trade offer was available on the intra-
day market. Because of this, all trades settled during the ITH were
assumed to be available at the beginning of the ITH. To reduce the
significance of this assumption the ITH was limited to a maximum
of three hours in this study. Finally, day-ahead prices were assumed
outside the ITH interval.

Previous studies have indicated that the energy efficiency of the
building envelope is an important factor in relation to DR quan-
tity and duration [15,35]. The performance of the proposed control
scheme was therefore also tested on two retrofitted versions
of the existing building to investigate how increased energy-
efficiency affected the potential for residential multi-market DR.
Both retrofits involve more energy-efficient windows, additional
external facade insulation, reduced infiltration rate, and a mechan-
ical constant air volume ventilation rate of 0.5 h−1 with 80% heat
recovery efficiency as listed in Table 2. The table also lists the
reference consumption for space heating over the four months sim-
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Table 2
Specification of retrofit scenarios and reference consumption in the simulated period.

Additional façade insulation Infiltration rate Window configuration Reference consumption

Existing – 0.50 [h−1] existing 59.9 kWh/m2

Retrofit1 0.125 m 0.18 [h−1] 2-layer glazing 28.1 kWh/m2

Retrofit2 0.205 m 0.10 [h−1] 3-layer glazing 18.6 kWh/m2

ulated for each respective building controlled with a PI-controller
with constant set point. A more detailed description of the building
model and the retrofit scenarios can be found in ref. [15].

3. Results

The following sections present the results from the simula-
tions of the case building. The mechanism of the proposed control
scheme is illustrated and evaluated on its impact on energy con-
sumption, overall cost savings, utilization of the intraday market,
and the fraction of trades that contributed towards grid balance.

3.1. The mechanism

The air temperature and heating rate in a three-room apartment
using a conventional PI-control scheme with a constant set point, E-
MPC using only day-ahead prices, and the proposed multi-market
control scheme are shown in Fig. 4 to illustrate the mechanism of
the controller. The intraday action (Fig. 4 bottom) shows how the
control scheme interacted with the intraday market in each time
step. As a guide to the remaining figures of this article, it should
be noted that any control scheme that involve intraday trading
(marked ITH) also includes day-ahead trading.

It is not possible to compare results from the two E-MPC-based
control schedules directly because they are outcomes of separate
simulations where the state of the building may deviate signifi-
cantly at any given time. However, on multiple occasions the effects
of intraday trading are easily distinguishable. For example on Fri-
day where the intraday trading resulted in additional temperature
boosting before noon and again in the evening compared to the
E-MPC based on only day-ahead prices. On Sunday the opposite
happened, where extended periods of temperature boosting were
cancelled since selling the procured energy was more profitable.

3.2. Energy consumption and cost savings

The extension of the E-MPC scheme to include intraday trad-
ing enables the building to participate in grid balancing while also
increasing the potential for cost savings. Fig. 5 shows the perfor-
mance of three E-MPC schemes when implemented in the case
building and the two retrofit scenarios. For transparency, results
are presented both in absolute and relative terms compared to a
PI-controlled baseline of each building case (origo).

The results from the E-MPC based on day-ahead prices indicated
that the retrofitted buildings (R1 and R2) only achieved moderately
higher absolute cost savings compared to the existing building (R0).
The reason is that, although the E-MPC scheme in the retrofitted
buildings tended to load shift more often, the magnitude of load
shifts in the existing building is larger due to the higher reference
consumption, as also seen in [15]. The introduction of intraday trad-
ing reduces the difference in absolute cost savings achieved in the
three buildings. This can be explained by relatively low fluctuations
in the day-ahead prices that were only sufficient to make utiliza-
tion of flexibility profitable in the retrofitted buildings, but not in
the existing building where a higher loss is associated with the
storage process. Since the prices on the two markets, as mentioned
in Section 1.2, are strongly correlated, this often resulted in the
energy-efficient buildings having already utilized all the available
flexibility before trading on the intraday market, whereas this was
not the case with the existing building. Ali et al. [24] addressed this
issue by reserving part of the flexibility by using more restrictive
comfort constraints in the initial day-ahead optimization than the
following intraday optimization problems. However, the authors
argued that reserving flexibility may just as well influence the
economic potential negatively as positively since the benefits and
viability of reserving flexibility depend strongly on the frequency
of DR-events, the size of the economic incentives offered, and the
risk-willingness of the consumer.

Fig. 4. Example period of both upward and downward regulation in the Retrofit2 building.
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Fig. 5. Economic performance of the algorithm and effect on consumption aggregated for all apartments.
Left (a) absolute differences from reference, right (b) relative to the reference.

Fig. 5b, which shows the cost savings in relative terms, indicates
a significant difference in the achieved cost savings between the
three buildings, suggesting that a higher fraction of the consump-
tion can be made flexible in retrofitted buildings. Furthermore,
the effect of enabling the control scheme to trade on the intraday
market is seen to positively influence the potential in all cases sig-
nificantly. The increase in consumed energy seen in Fig. 5 happens
since heat is stored by increasing the air temperature. This increase
in temperature naturally results in a higher heat loss to the sur-
roundings, and thereby a higher overall consumption. The control
algorithm determined when market conditions were sufficiently
profitable to make up for the heat lost in the storage process. Finally,
Fig. 5 suggest that the economic potential gained by increasing the
ITH from one to three hours is marginal.

3.3. Interaction with the intraday market

This section presents how the proposed control scheme inter-
acts with the two electricity markets. The electricity volumes
traded by the E-MPC using day-ahead only and the proposed mul-
timarket E-MPC are displayed in Fig. 6.

The results indicate that extending the ITH leads to a moder-
ate increase in intraday trading activity. The reason is that this
allows the control scheme to use more elaborate trading patterns
including scenarios where electricity was bought in one hour in
order to sell procured electricity in the next hour. Furthermore, the
share of electricity procured through intraday trading increased for
the retrofitted scenarios. This suggests that energy-efficient build-
ings, retrofitted or new, could on an aggregated level be considered
assets in terms of short-notice residential DR.

As described in Section 1.2, BRPs with imbalanced operation are
motivated to engage in intraday trading to avoid paying balanc-
ing prices. This suggests a certain correlation between the intraday
trading and the expected grid balance. The philosophy behind the
proposed control scheme is that, by contributing to the balance
of individual market actors, the resulting DR will on average have
contributed more to overall grid balance than imbalance. How-
ever, since balancing out a single BRP does not necessarily equate
to increased grid balance, it is necessary to evaluate whether the
performed DR actually contributed to balancing the grid.

This was done by labelling all intraday trades carried out by
the control scheme based on whether it contributed to balancing

Fig. 6. Electricity traded on the day-ahead and intraday markets (mean of all zones).
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Table 3
Percentage of time the DR contributed to balance and imbalance, respectively.

Grid state Building R0 R1 R2

Control action 1 h
ITH

3 h
ITH

1 h
ITH

3 h
ITH

1 h
ITH

3 h
ITH

Downregulation Correct 33.1% 39.8% 36.9% 42.7% 35.0% 41.4%
(48% of time) Incorrect 2.5% 8.1% 3.9% 8.8% 4.4% 7.7%

No action 64.4% 52.1% 59.2% 48.5% 60.6% 50.9%

Upregulation Correct 9.6% 17.8% 11.8% 18.6% 14.6% 17.4%
(28% of time) Incorrect 17.4% 24.6% 17.4% 23.9% 15.6% 21.7%

No action 72.9% 57.6% 70.9% 57.6% 69.8% 60.9%

the grid or introduced further imbalance. The terminology used in
the following takes offset in the grid point of view. This means that
buildings can provide upward regulation to the grid by lowering the
consumption and, conversely, downward regulation by increasing
consumption. According to Table 3, the grid was in need of down-
regulation 48% of the time and upregulation 28% of the time during
the simulation period [19].

Furthermore, Table 3 indicates how the algorithm operated dur-
ing these hours by dividing control actions into ‘correct’ ones that
aided the grid and ‘incorrect’ ones that would have negatively
impacted grid balance. As such, the following is an evaluation of
both the proposed control scheme and the historical market condi-
tions in relation to the needs of the electricity grid. Periods where
the grid was not in need of balancing power was left out of this
analysis.

It is seen that the control scheme, in a relatively large fraction of
the time where the grid was in need of regulation, did not engage in
intraday trading, but merely implemented the control action opti-
mized with respect to day-ahead prices. Depending on the specific
simulation, this tendency was observed between 48% and 73% of
the time, which can be caused by e.g. poor price conditions or a
lack of available flexibility.

The results in Table 3 also indicate that the algorithm performed
well during times where the grid was in need of downregula-
tion during which the actions carried out by the controller mostly
favoured the grid. During these periods, the controller increased the
consumption of the building to store energy between 33% and 43%
of the time. On the other hand, it is seen that the control scheme
was less efficient at providing services to a grid in need of upreg-
ulation. In these periods, more incorrect actions than correct were
carried out. Inspecting the historical data revealed that the intraday
prices often did not reflect the state of the grid correctly. When the
grid needed downregulation, the prices indicated the opposite 22%
of the time while in the upregulation scenario this was the case 47%
of the time.

4. Discussion

The case results presented in Section 3.2 indicate that the major-
ity of the economic benefits of including intraday trading can be
achieved with a one-hour ITH, and thereby − compared to three-
hour ITH − reduce the complexity of the planning phase. This
implies that simple one-way trading patterns (i.e. buy-only or sell-
only strategies) were sufficient. However, in real-world application,
the ability to consider multiple offers at the same time may allow
for easier integration with the market, where offers may be placed
at any time throughout the trading window corresponding to the
relevant hour. Longer trading horizons allowing utilization of offers
entering the intraday market early may therefore be more practical,
also bearing in mind that the computational time of the three-hour
ITH control problem including both the day-ahead and all eight
intraday scenarios for all ten zones was approximately 1.2 s. Rule-
based logic could potentially speed this up further by ruling out

scenarios that are unlikely to produce optimal solutions based on
price characteristics.

The economic optimization in the E-MPC control scheme will
often result in the control scheme tracking the lower temperature
set point to minimise the energy consumption − only raising the
temperature when prices encourage it. During periods of set point
tracking the building has, due to the zero-tolerance for comfort
violations, no negative flexibility to offer to the intraday market.
Consequently, the controller was only able to sell electricity when
temperature boosting had occurred as a result of the day-ahead
optimization. This relationship can be found in Fig. 4 where it is
clear that electricity was only sold in periods where the day-ahead
algorithm was performing temperature boosting. This limitation, in
combination with misleading prices, is seen to impact the results
of Section 3.3, where the control scheme is less efficient at reduc-
ing consumption (i.e. providing upward regulation) than increasing
consumption (downward regulation). Enabling buildings to pro-
vide upward regulation could be done by allowing temperature
violations based on either the profitability of prices or simply a
certain fraction of time could to some extent address this limitation.

5. Conclusion

This simulation-based study indicates that consumers may
increase their economic incentive to invest in economic predic-
tive control of residential space heating by engaging in trades
on the intraday electricity market in parallel with the day-ahead
electricity market. Especially buildings that do not provide suf-
ficient storage-efficiency to frequently exploit day-ahead price
fluctuations through load shifting benefited from the multi-market
approach; here, cost savings were approx. doubled compared to the
single-market approach. The results also indicated that increasing
the energy efficiency of the building, despite the reduction in over-
all consumption, only had a small negative impact on the quantities
of energy traded on the intraday market. This suggests that also new
or recently retrofitted buildings may benefit from participating in
intraday market-driven demand response.

Finally, future work should investigate how an alternative for-
mulation of comfort constraints that allows temporary set point
violations increases the potential for buildings to provide services
to electricity grids in need of upward regulation.
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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract

Heat transfer between apartments can challenge the positive effects of applying model predictive control (MPC) in multi-apartment 
buildings. This paper reports on an investigation of how the performance of two different MPC approaches – centralized and 
decentralized – may be affected by non-insulated and insulated partition walls between apartments. The results suggest that ignoring 
inter-zonal thermal effects using the less complicated decentralized approach leads to insignificant performance reductions 
compared to the more complicated centralized approach – especially if partition walls are insulated.
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1. Introduction

Current studies have demonstrated that model predictive control (MPC) of building systems may increase energy 
efficiency and ensure thermal comfort. MPC schemes rely on a model of the building dynamics, measurements of the 
state of the building and forecasts of disturbances (e.g. weather and occupancy) to determine a sequence of optimal 
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control actions [1-3]. Several studies have applied MPC to optimize the operation of heating, ventilation and air 
conditioning (HVAC) systems and have achieved significant energy savings. Sourbron et al. [2] applied MPC to 
operate a heat pump in an office building equipped with thermo active building systems, which reduced the electricity 
consumption by 15% while ensuring thermal comfort. Goyal et al. [3] used MPC to operate an air-handling unit and 
achieved energy savings of 55-60% compared to a dual-maximum baseline control. In a simulation study, Oldewurtel 
et al. [1] compared MPC to conventional rule-based control for various building typologies and locations, and found 
that MPC, in most cases, reduced energy consumption while improving thermal comfort. 

Several studies have also considered time-varying energy prices together with MPC to minimize the operational 
cost, i.e. economic model predictive control (E-MPC), to provide flexibility to the energy grid through demand 
response [4-7]. A simulation study by Avci et al. [4] used real time prices together with an E-MPC scheme to operate 
an AC unit in a single residence and reduced the energy consumption in peak-hours by 23.6% and operational cost 
with 13% compared to a baseline controller. Pedersen et al. [5] used an E-MPC scheme and day-ahead power market 
prices to investigate the demand response potential in an existing residential multi-apartment building before and after 
retrofitting the building envelope. Compared to a baseline PI controller, the simulation results suggested that the E-
MPC scheme reduced the energy consumption in peak-hours in the existing and retrofitted building by approx. 7% 
and up to 47%, respectively, while ensuring thermal comfort. 

For multi-zone buildings, centralized and decentralized thermal control schemes exist [5, 8, 9]. Centralized MPC 
schemes require a detailed building model that accounts for heat transfer between adjacent zones to determine the 
operation in all zones simultaneously. Decentralized MPC relies on a set of single-zone models that neglect inter-
zonal heat transfer, leading to multiple detached optimization problems. In theory, decentralized control schemes 
return a sub-optimal solution compared to centralized MPC. To show this, Moroşan et al. [8] compared a conventional 
baseline controller with a decentralized and centralized MPC scheme, which achieved energy savings of 5.5% and 
13.4%, respectively. However, the authors noted that the performance difference depends on the coupling degree 
between zones. Pedersen et al. [5] likewise found a minor performance difference between centralized and 
decentralized control structures when applying E-MPC. 

In existing apartment buildings, the interior partition walls often consist of heavy materials with high conductivity, 
such as concrete. However, in a retrofit situation, where the energy efficiency of the building is increased, insulation 
is often added to the partition walls to reduce inter-zonal noise. Consequently, the conductivity of the wall is reduced, 
which may diminish any advantage of including inter-zonal thermal effects. The decentralized control approach may 
therefore be more practical since it does not require mapping of zone-adjacency during model establishment or 
exchange information between controlled zones during operation. This paper therefore investigates the performance 
difference between centralized and decentralized MPC in an apartment building without and with insulated partition 
walls.

2. Method

The third floor of an existing residential building located in Aarhus, Denmark, consisting of ten apartments and 
five stairwells was modelled in EnergyPlus (EP) and used to represent the actual building to be controlled. In addition 
to the existing building, a case with a retrofitted building envelope was considered. Information on geometry and
thermal characteristics of the existing and retrofitted buildings are provided in ref. [5] (the retrofitted building is 
denoted retrofit8 in the reference). The existing partition walls between apartments were assumed to consist of 120 
mm concrete while additional 100mm mineral wool and 13mm gypsum was added when insulating the walls.

The MPC scheme was implemented in MATLAB and used to operate the space heating (electrical baseload) of 
the EP model through co-simulation facilitated by the Building Controls Virtual Test Bed (BCVTB) [10]. The 
simulations were carried out for the period December 1, 2016 to February 28, 2017, which constitutes the coldest 
period of the heating season in Denmark, using an EP weather data file based on on-site weather measurements. To 
ease the interpretation of the results, internal gains originating from occupants and equipment were omitted and perfect 
weather forecasts were assumed.
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2.1. Centralized and decentralized model predictive control

MPC is an optimization-based control scheme, which at each time step determines a sequence of optimal space 
heating control actions by minimization of a cost function based on an input weight vector c associated with the control 
actions. The problem (eq. 1a-1g) is solved for a finite prediction horizon N which, in this study, was set to 72 hours. 
The control actions are restricted by the maximum design power Pmax of the heating system (eq. 1d), and eq. 1e and 
eq. 1f constrain the apartment air temperatures and the temperature rate of change, respectively. Specifications for 
input and state constraints are listed in Table 1. The control actions are communicated to the space heating system in 
a receding horizon approach, i.e. only the first control action is implemented and the procedure is then repeated at the 
next time step based on recent apartment air temperature measurements and updated disturbance forecasts [1].

… … … … … …    minimize
�0|�,…,��|�

      J = ���|�
� ∙ ��|�

�-1

�=0

(1a)

                         subject to     ��+1|� = ���|� + ���|� + ���|�                    ∀� = 0, … ,�-1 (1b)

…………       .��+1|� = ���+1|�                                             ∀� = 0, … ,�-1 (1c)

                           0 ≤ ��|� ≤ �max                                              ∀� = 0, … ,�-1 (1d)

                           �min,n|� ≤ ��+1|� ≤ �max,n|�                             ∀� = 0, … ,�-1 (1e)

                           ∆�min,n|� ≤
��+1|�

∆�
≤ ∆�max,n|�                       ∀� = 0, … ,�-1 (1f)

                           �0|� = �� (1g)

The MPC scheme requires a reduced-order model that adequately describes the thermodynamics of the building, 
e.g. grey-box models. Grey-box models are characterized by having a pre-specified model structure consisting of 
physically meaningful parameters that are estimated from measurement data through methods from the field of system 
identification [11]. In a multi-apartment building, the model represents an interconnected system of subsystems 
(corresponding to apartments), where the interactions occur due to conduction between apartments [12]. Identifying 
suitable multi-zone models for centralized control schemes, thus considering the thermal interactions, can be difficult 
and requires time-consuming experiments, planning and modeling [12, 13]. Decentralized control schemes neglect 
the interactions and treat the thermal influences between subsystems as external unknown disturbances, thus adequate 
models are easier to identify. In this study, a two-state grey-box apartment model was used, where the two states 
represent the lumped thermal capacity of the zone air and the constructions. The applied state space representation is 
given in (1b-1c) with state matrix A, system states x for time step t+n forecasted at time t, input matrix B, control 
actions u, disturbance matrix E, disturbances d, output matrix C and output y (i.e. apartment air temperatures).

Table 1. Specification of input and state constraints
Apt. 1 Apt. 2 Apt. 3 Apt. 4 Apt. 5 Apt. 6 Apt. 7 Apt. 8 Apt. 9 Apt. 10

Area       [m2] 81 94 81 94 81 94 81 94 50 94
Pmax           [W/m2] 50 50 50 50 50 50 50 50 50 50
Tmin        [°C] 20 22 20 22 20 22 20 22 20 22
Tmax            [°C] 24 26 24 26 24 26 24 26 24 26
∆Tmin    [°C/h] -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1 -2.1
∆Tmax     [°C/h] 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

The centralized and decentralized MPC schemes were first evaluated in terms of their ability to track the lower 
comfort bounds, which constitutes the most energy efficient control approach. Secondly, the MPC schemes’ ability to 
achieve end-user cost savings was assessed by considering time varying energy prices as input weights. Historical 
day-ahead power market prices for the simulation period were used, cleared for the bidding area western Denmark 
(DK1). For the sake of simplicity, taxation of electricity was omitted, thus results presented in absolute values are not 
directly comparable to actual costs paid by building owners.
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3. Results and discussion

The ability of the centralized and decentralized MPC schemes to track the lower comfort bound for one week in 
apartment 9 in the retrofitted building, with and without insulated partition wall is displayed in Figure 1. For the 
building with existing partition walls, the centralized MPC scheme kept the air temperature close to the temperature 
set-point, whereas the decentralized MPC scheme overestimated the heating demand, leading to a positive temperature 
offset compared to the temperature set-point. The positive offset was caused by heat gains from adjacent apartments 
with higher temperature set-points (see Table 1). When insulating the partition walls, the heat exchange between 
adjacent apartments was reduced, resulting in a similar performance of the centralized and decentralized MPC
schemes. 

Figure 1. Simulation results of the room temperature in apt. 9 during one week.

The mean biased error (MBE) between the temperature set-points and the resulting air temperatures during the 
entire simulation period is specified in Table 2 (+ indicates insulated partition walls). The MBE supports the 
observations in Figure 1, where the decentralized MPC scheme in buildings with existing concrete partition walls led 
to positive and negative offsets for the apartments with a set-point of 20°C and 22°C, respectively. In the case with
the insulated partition walls, the MBE for the two control schemes were very similar. In some apartments, the
decentralized MPC scheme even achieved better results than centralized MPC, presumably because the required multi-
apartment model was more difficult to identify than the single-apartment models, which led to a significant increase 
in the uncertainty of the parameter estimates [5].

Table 2. Mean biased error
Building Control Apt. 1 Apt. 2 Apt. 3 Apt. 4 Apt. 5 Apt. 6 Apt. 7 Apt. 8 Apt. 9 Apt. 10
Existing Centralized 0.00 0.01 0.00 0.02 0.00 0.01 0.02 0.02 0.00 0.01

Decentralized 0.06 -0.09 0.10 -0.07 0.12 -0.04 0.07 -0.07 0.12 -0.03
Existing+ Centralized -0.01 0.03 -0.02 0.03 -0.01 0.01 -0.01 0.02 0.01 0.00

Decentralized 0.01 -0.01 0.03 -0.01 0.03 -0.01 0.02 -0.01 0.03 0.00
Retrofit Centralized -0.01 0.03 -0.01 0.02 -0.02 0.02 -0.01 0.04 -0.02 0.00

Decentralized 0.06 -0.09 0.10 -0.09 0.11 -0.05 0.06 -0.08 0.17 -0.05
Retrofit+ Centralized -0.03 0.03 -0.02 0.02 -0.02 0.02 -0.04 0.03 0.00 -0.01

Decentralized 0.00 -0.02 0.02 -0.02 0.02 -0.01 0.01 -0.02 0.03 -0.01

The mechanism of a conventional PI-controller and the E-MPC schemes using historical day-ahead prices during 
one week are displayed in Figure 2 for the retrofitted building with the existing partition walls and with insulated 
partition walls. In both cases, the conventional PI-controller maintained the air temperature close to the specified lower 
comfort set-point of 20°C at all times. The E-MPC schemes, however, exploited the structural thermal mass to reduce 
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the space heating consumption in high price periods by increasing the air temperature within the comfort bounds at 
times with low prices. Since the optimal control actions depend on the state of the building at any given time, direct 
comparison between the two control schemes at each time instance should be done carefully. However, in the case 
with the existing concrete partition walls, discrepancies between the two E-MPC schemes are clearly distinguishable
on Thursday and Friday, where only the centralized E-MPC scheme increased the temperature. Furthermore, the 
temperature offset of the decentralized control scheme identified previously was also apparent in the case with the 
concrete partition walls. For the insulated partition walls, the control schemes led to almost identical operations.

Figure 2. Simulation results of the room temperature in apt. 9 during one week using E-MPC.

Table 3 lists the total costs of each of the three control schemes (PI, centralized E-MPC and decentralized E-MPC) 
for the four building cases: before and after a general retrofit of the building envelope and with and without insulated 
partition walls. Furthermore, the total achieved cost savings and mean comfort violations compared to the PI-controller 
are specified. The standard deviations across the apartments are specified in the parentheses. The results suggest that 
centralized and decentralized E-MPC schemes achieved total cost savings similar to those of the PI controller. The 
decentralized control scheme, however, tended to distribute cost savings unevenly between the apartments in the 
scenarios without insulated partition walls. Further inspection of the simulation results indicated that this was due to 
lower achieved cost savings in the apartments with a lower comfort bound of 20°C; here, the E-MPC scheme planned 
the heating operation without considering the heat gains from adjacent apartments. This effect was significantly 
reduced in the scenarios with insulated partition walls. Furthermore, in the case with the insulated partition walls, the 
decentralized control scheme out-performed the centralized control scheme in terms of maintaining comfort, 
presumably because the multi-zone models are more challenging to identify.

Table 3. Summarized simulations results for all ten apartments

Building Control Total cost Cost savings Relative 
cost saving

Mean comfort 
violations

Existing PI € 1040 89.7 (4.3) °Ch
Centralized € 1010 € 30 (0.66) 2.9% 18.1 (9.8) °Ch
Decentralized € 1011 € 29 (1.37) 2.8% 22.7 (9.4) °Ch

Existing+ PI € 1001 84.4 (2.9) °Ch
Centralized € 977 € 24 (0.42) 2.4% 15.9 (2.6) °Ch
Decentralized € 979 € 22 (0.50) 2.2% 11.2 (1.5) °Ch

Retrofit PI € 327 43.9 (3.0) °Ch
Centralized € 293 € 34 (0.86) 10.4% 9.3 (8.7) °Ch
Decentralized € 293 € 34 (1.59) 10.4% 18.0 (8.7) °Ch

Retrofit+ PI € 323 38.5 (1.7) °Ch
Centralized € 287 € 36 (0.55) 11.1% 7.5 (3.0) °Ch
Decentralized € 287 € 36 (0.63) 11.1% 6.9 (2.2) °Ch
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4. Conclusion

This paper reports on a simulation-based study of the performance differences between centralized and 
decentralized MPC schemes for optimal space heating operation in an existing and retrofitted multi-apartment 
building. The results of a 90-day simulation period showed that the decentralized MPC in buildings without insulated 
partition walls tended to result in a constant offset from the specified temperature set-point. Consequently, the 
achieved total cost savings for both schemes were found to be similar, but the decentralized control scheme failed to 
distribute the savings evenly across all apartments. Insulating the partition walls reduced the constant temperature 
offsets when applying the decentralized control scheme, which was reflected in the results. The decentralized control 
scheme was not only able to distribute cost savings evenly, but it also out-performed centralized control in terms of 
maintaining temperatures within the comfort bounds. This reversal in the optimal approach is likely caused by the fact
that the advantages of centralized control diminish as insulation is added between zones, combined with the fact that 
the more complicated setup of the centralized control was more prone to uncertainty issues when identifying a building 
model for MPC. 

Overall, the results suggest that decentralized control schemes can be applied in multi-apartment buildings, 
especially where partition walls are insulated for noise-reduction purposes. However, it is difficult to specify a general
level of insulation, as the performance depends e.g. on the building, the modeling technique and the control purpose. 
Applying decentralized MPC also simplifies and reduces the time-consuming work involved when implementing 
MPC schemes. Furthermore, decentralized control schemes allow apartment owners to specify control objectives 
themselves, just as it allows for individual apartment owners to decide if and when to invest in advanced control.
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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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1. Introduction

Economic model predictive control (E-MPC) of building energy systems is an optimization based control scheme 
that uses a model of the building thermodynamics, forecasts of disturbances and measurements of the building state 
to determine a sequence of optimal control actions. Applying E-MPC together with time-varying energy prices to 
minimize the space heating operational cost and perform demand response (DR) have been investigated in several 
studies [1-4]. These E-MPC schemes achieve economic benefits by using the thermal capacity of the structural mass 
as storage by charging and discharging it with the room heating system in periods with low or high prices, respectively. 
The schemes therefore result in fluctuating indoor temperatures, and it is therefore necessary to ensure that economic 
benefits are not violating the thermal comfort of the occupants. 

A simple E-MPC formulation in this regard is to assume that occupants are comfortable as long as temperatures 
are within a predefined comfort band, e.g. defined by a preferred temperature and an acceptable deviation from it. 
Using this comfort formulation, several studies have suggested significant cost savings and DR potentials. Halvgaard 
et al. [5] minimized the operational cost of a heat pump and achieved cost savings of 25% compared to traditional 
control. Pedersen et al. [4] optimized the space heating operation in a multi-apartment building which, compared to a 
conventional PI-controller, achieved cost savings of up to 6% and reduced energy consumption in peak-hours with up 
to 47%. Vrettos et al. [1] applied E-MPC for heat pump operation and achieved cost savings of 18.4% compared to a 
rule-based controller. However, an E-MPC scheme using this comfort formulation will often result in the controller 
tracking either the upper or the lower boundary of the comfort band [4]. This behavior means that the air temperature 
rarely is equal to the preferred temperature specified by the occupants. Another shortcoming of this formulation is that 
the building has no downward flexibility to offer in periods where the lower comfort bound is tracked, i.e. it is not 
possible to reduce the space heating demand if this service is requested by the supply side [6].

Another approach to ensure comfort is to formulate a multi-objective optimization (MOO) problem, i.e. 
simultaneously minimize operational costs and thermal comfort violations [2, 7-10]. Avci et al. [2] used an E-MPC 
scheme to minimize energy consumption and penalize temperature deviations from the preferred temperature, and 
introduced a discomfort tolerance index to weigh the objectives. Compared to a baseline controller, the E-MPC scheme 
reduced operational cost with 13% while increasing the mean temperature with 0.15°C. Morales-Valdés et al. [8]
evaluated several MOO formulations and suggested to include Fanger’s predicted mean vote (PMV) index or predicted 
percentage dissatisfied (PPD) index in the cost function which, however, led to a nonlinear optimization problem. 
Therefore, Cigler et al. [7] proposed a convex approximation of the PMV index in the cost function. However, 
including the PMV index in the cost function relies on assumptions regarding clothing level and metabolic rate, as 
well as measurement of air speed, relative humidity and the mean radiant temperature. Furthermore, the performance 
reported in the above-mentioned MOO studies depends on the selection of the assigned relative weights which 
essentially vary in time as they depend on the building conditions. 

Current studies address thermal comfort in E-MPC formulations very differently, which may affect the reported 
DR potentials. This paper therefore reports on a simulation-based study, where the performance of an E-MPC scheme 
using both single-objective and multi-objective formulations to address thermal comfort violations is investigated.  
The aim is to provide a quantitative performance assessment of the different formulations in terms of comfort 
violations and operational cost, and to discuss their practical implications.

2. Method

A residential building consisting of ten apartments and five stairwells located in Aarhus, Denmark, was chosen as 
test case. A detailed EnergyPlus (EP) model was used to represent the building to be controlled; information on 
geometry and thermal characteristics of the building are provided in ref. [4] in which the building is denoted retrofit8.
Furthermore, 100mm insulation was added to the partitioning walls to minimize the effect of inter-zonal heat exchange
and thereby allow for a decentralized control principle [11]. The E-MPC scheme was implemented in MATLAB and 
used to operate the space heating of the EP model through co-simulation facilitated by the Building Controls Virtual 
Test Bed (BCVTB) [12]. The simulations were carried out for the period December 1, 2016 to February 28, 2017, 
which constitutes the coldest period of the heating season in Denmark, using an EP weather file based on on-site 
weather measurements. Historical day-ahead power market prices (cleared for Western Denmark, DK1 region) from 
the simulation period were used. To ease the interpretation of the results, internal gains originating from occupants 
and equipment were omitted, and perfect weather and price forecasts were assumed.
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2.1. Economic model predictive control

At each time step the E-MPC scheme (eq. 1a-1g) determines a sequence of optimal space heating control actions 
which minimize temperature deviations from the preferred temperature (j1) and the operational costs (j2) for a finite 
prediction horizon N (set to 72 hours in this study). 

… … … … … …    minimize
�,�

      ��� ����
j1

+ ����
j2

(1a)

                         subject to     ��+1 = ���  + ��� + ���                                ∀� = 0, … ,�-1 (1b)
…………       .��+1 = ���+1                                                    ∀� = 0, … ,�-1 (1c)
                           ϵ�+1 = �preferred -  ��+1                                  ∀� = 0, … ,�-1 (1d) 
                           0 ≤ �� ≤ �max                                                   ∀� = 0, … ,�-1 (1e)
                           �min ≤ ��+1 ≤ �max                                             ∀� = 0, … ,�-1 (1f)
                           �0 = �(0) (1g)

where Q is a time-invariant symmetric matrix with main diagonal elements and c is the time-varying day-ahead prices. 
A state space representation of the building’s thermodynamics is specified in eq. 1b and eq. 1c. The control actions
are restricted by the maximum power Pmax of the heating system (eq. 1e), and the defined thermal comfort band (eq. 
1f), which may vary between the apartments as listed in Table1. Recent measurements of the air temperature are used 
to update the current state of the building in eq. 1g with a Kalman Filter.

Table 1. Input and state constraints
Apt. 1 Apt. 2 Apt. 3 Apt. 4 Apt. 5 Apt. 6 Apt. 7 Apt. 8 Apt. 9 Apt. 10

Pmax 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2 50 W/m2

Tpreferred 20.5 °C 22.0 °C 21.5 °C 22.0 °C 20.5 °C 21.5 °C 21.0 °C 20.0 °C 22.0 °C 21.5 °C
Tmin 19.5 °C 20.5 °C 20.5 °C 20.0 °C 19.0 °C 19.5 °C 19.0 °C 19.0 °C 20.5 °C 19.5 °C
Tmax 21.5 °C 23.5 °C 22.5 °C 24.0 °C 22.0 °C 23.5 °C 23.0 °C 21.0 °C 23.5 °C 23.5 °C

Since the two objectives j1 and j2 are conflicting, there is generally no unique solution that optimizes both objectives 
simultaneously, which suggests that a useful approach to solving the MOO is that of Pareto optimality [13]. The set 
of Pareto optimal solutions, which from a mathematically point of view is equally acceptable, forms a Pareto front. 
The simplest method to obtain Pareto optimal solutions is convex combination of j1 and j2, e.g. the weighted sum 
approach (as used in ref. [2, 7, 8]): J = λ ∙ j1 + (1-λ) ∙ j2, where λ ∈ [0,1]. Note that if λ=1 the control scheme is a 
traditional reference tracking control problem, whereas if λ=0 the control scheme is similar to the ones used in ref. [1, 
4, 5]. However, as mentioned in the introduction, the performance of this approach depends significantly on the 
assigned relative weights which are difficult to choose when the Pareto front is steep or if the objective functions have 
very different ranges [13, 14]. Furthermore, thermal discomfort can be difficult to quantify since thermal comfort has 
no direct economic translation. To overcome this, Das and Dennis [13] proposed a normal boundary intersection (NBI) 
method to approximate the Pareto front with evenly distributed discrete solutions that are independent of weights 
between objectives (see Figure 1).

Figure 1. Normalized optimal Pareto solutions with λ increments of 0.05.
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When the set of discrete Pareto solutions has been determined, several approaches exist to select and implement 
an agreeable trade-off between j1 and j2 [15]. In this study, the compromise solution is selected, which corresponds to 
the solution with the shortest Euclidean distance to the utopia point. The utopia point is, as the name suggests, an ideal 
solution when minimizing each objective independently. Figure 1 displays the results of the weighted sum and NBI
methods for a scenario with two objectives with different ranges, and indicates that NBI is more resistant to ill-
conditioned problems. The utopia point is origin, the solid line is the continuous Pareto front and the black and blue
circles mark the obtained discrete Pareto solutions and the compromise solution, respectively.

Since an MOO problem is computationally demanding to solve compared to a single-objective optimization (SOO) 
problem, a SOO formulation is proposed which aims at imitating the behavior of MOO. The formulation builds on 
eq. 2a-2g. However, Q is an appropriate sized matrix of zeros (i.e. only objective j2 is effective). Furthermore, 
additional state constraints are specified as illustrated in Figure 2, describing the maximum acceptable temperature 
deviations within the prediction horizon using the parameter εmax [°Ch] which is then a tuning parameter to indicate 
preference between thermal discomfort and operational cost minimization.   

Figure 2. Principle of proposed additional six state constraints

3. Results and discussion

Simulation results obtained using the following four different E-MPC formulations have been evaluated with regard 
to their ability to reduce deviations from the preferred temperature (see Table 1) and to minimize operational costs: 

a) Single objective: Minimize temperature deviations from the preferred temperature.
b) Single objective: Minimize operational costs.
c) Multi objective:  Compromise solution (see Figure 1) between temperature deviations and cost.
d) Single objective: Minimize operational costs, but with additional state constraints (see Figure 2).

The objectives and constraints imposed in the four different control schemes vary as a result of the different 
formulations, thus rendering any direct comparison of results unfair from a mathematical point of view. The evaluation 
is therefore based on quantification of the four problem formulations on the achieved results. Figures 3a-d depict the 
indoor air temperature for a one week period in apartment 3 using the four E-MPC schemes with the time-varying 
energy prices c depicted at the bottom of Figure 3. Formulation a) ensured a temperature (solid line) close to the 
preferred temperature at all times, whereas the three other formulations utilized the thermal comfort band (dashed 
lines) to minimize operational cost. Formulation b) caused the E-MPC scheme to mainly track the lower and upper 
comfort bounds in order to exploit price fluctuations by charging and discharging the thermal capacity of the building. 
Formulation c) tracked the preferred temperature for the majority of the time, allowing deviations in temperature when 
prices encouraged it. The proposed formulation d) with εmax = 9°Ch exhibited similar behavior and DR-potential as c).
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Figure 3. Mechanism of the four E-MPC schemes and the energy price during one week.

The normalized total operational cost during the entire 90-day simulation period as a function of the normalized 
average root-mean-square-error (RMSE) across the ten apartments is displayed in Figure 4 for the four formulations. 
The solutions obtained using problem formulations a), b) and c), respectively, are marked with “x” while solutions for 
formulation d) with different εmax values are illustrated with “o” (displayed numbers are εmax). Formulation a), which 
was a traditional set point tracking control problem, resulted in the lowest deviations from the preferred set point 
temperature but also the highest operational cost. Formulation b) achieved the lowest operational cost but also the 
highest RMSE. Formulation b) may therefore have overestimated the DR potential since occupants, in reality, may 
experience uncomfortable thermal conditions when tracking the lower comfort bound for long consecutive periods. 
Formulation c) demonstrated an acceptable compromise between the two objectives while formulation d) achieved 
similar performance as formulation c). Figure 4 indicates an almost convex combination of the two solutions a) and 
b) when choosing different values for εmax, which could not be achieved by convex combination of the objectives (e.g. 
using the weighted sum approach) because of the different ranges of the objectives. Furthermore, formulation c) and 
d) enable downward flexibility, i.e. it is possible to reduce space heating if this service is sought by the grid.

Figure 4. Normalized mean RMSE and total operational cost for all ten apartments.
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4. Conclusion

This paper reports on a simulation-based study aimed at quantifying the performance of an E-MPC scheme using 
four different optimization problem formulations that handle thermal comfort in different ways. It is difficult to 
conclude which of the four formulations is preferable as it depends on whether – and how much – the occupants are 
willing to deviate from their preferred indoor air temperature to minimize operational cost through demand responses. 
However, the parameter εmax in the proposed single-objective problem formulation – a parameter describing the 
maximum acceptable deviations from the preferred indoor air temperature – could be communicated to occupants as 
a personal indicator for the acceptable tradeoff between deviations from the preferred temperature and cost savings 
or, in other words, their ‘DR willingness’.  

Acknowledgements

The authors gratefully acknowledge the support of this work from the project “READY.dk” financed by the Danish 
energy research and development program ForskEl (grant number: 12305) and the project 'Resource Efficient Cities 
Implementing Advanced Smart City Solutions' (READY) financed by the 7th EU Framework Programme (FP7-
Energy project reference: 609127).

References

[1] E. Vrettos, K. Lai, F. Oldewurtel and G. Andersson. Predictive Control of Buildings for Demand Response with dynamic day-ahead and 
real-time prices. in Control Conference (ECC) (2013), Zürich.

[2] M. Avci, M. Erkoc, A. Rahmani and S. Asfour. Model predictive HVAC load control in buildings using real-time electricity pricing.
Energy Build. 60 (2013) 199-209. 

[3] M. D. Knudsen and S. Petersen. Demand response potential of model predictive control of Space heating based on price and carbon 
dioxide Intensity signals. Energy Build. 125 (2016) 196-204. 

[4] T. H. Pedersen, R. E. Hedegaard and S. Petersen. Space heating demand response potential of retrofitted residential apartment blocks.
Energy Build. 141 (2017) 158-166. 

[5] R. Halvgaard, N. K. Poulsen, H. Madsen and J. B. Jørgensen. Economic Model predictive Control for Building Climate Control in a Smart 
Grid. in IEEE PES Innovative Smart Grid Technologies (ISGT). (2012) 1-6, Washington, D.C., United States. 

[6] R. E. Hedegaard, T. H. Pedersen and S. Petersen. Multi-market demand response using economic model predictive control of space heating 
in residential buildings. Energy Build.(2017), in press.

[7] J. Cigler, S. Prívara, Z. Váňa, E. Žáčeková and L. Ferkl. Optimization of Predicted Mean Vost index within Model Predictive Control 
framework: Computationally tractable solution. Energy Build. 52 (2012) 39-49. 

[8] P. Moreles-Valdés, A. Flores-Tlacuahuac and V. M. Zavala. Analyzing the effects of comfort relaxation on energy demand flexibility of 
buildings: A multiobjective optimization approach. Energy Build. 85 (2014) 416-426.

[9] M. Castilla, J. Álvarez, M. Berenguel, F. Rodríguez, J. Guzmán and M. Pérez. A compariosn of thermal comfort predictive control 
strategies. Energy Build. 43 (2011) 2737-2746.

[10] F. Ascione, N. Bianco, C. De Stasio and G. M. Mauro. Simulation-based model predictive control by the multi-objective optimization of 
building energy performance and thermal comfort. Energy Build. 111 (2016) 131-144.

[11] T. H. Pedersen, R. E. Hedegaard, M. D. Knudsen and S. Petersen. Comparison of centralized and decentralized model predictive control in 
a building retrofit scenario. in CISBAT International Conference (2017), Lausanne, Switzerland, submitted.

[12] M. Wetter. Co-simulation of building energy and control systems with the Building Controls Virtual Test Bed. J. Build. Perform. Simul. 3 
(4) (2010) 1-19.

[13] I. Das and J. E. Dennis. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria 
optimization problems, SIAM J. Optim. 8 (3) (1998) 631-657.

[14] A. Gambier. MPC and PID Control Based on Multi-objective Optimization. in American Control Conference (2008), Washington, USA.
[15] V. M. Zavala. Real-Time Resolution of Conflicting Objectives in Building Energy Management: An Utopia-Tracking Approach. in Fiftth 

National Conference of IBPSA-USA (2012), Madison, Wisconsin.



Paper P6

81

P6 Investigating the performance of scenario-based model 
predictive control of space heating in residential buildings

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbps20

Download by: [Statsbiblioteket Tidsskriftafdeling] Date: 17 November 2017, At: 07:18

Journal of Building Performance Simulation

ISSN: 1940-1493 (Print) 1940-1507 (Online) Journal homepage: http://www.tandfonline.com/loi/tbps20

Investigating the performance of scenario-based
model predictive control of space heating in
residential buildings

Theis Heidmann Pedersen & Steffen Petersen

To cite this article: Theis Heidmann Pedersen & Steffen Petersen (2017): Investigating the
performance of scenario-based model predictive control of space heating in residential buildings,
Journal of Building Performance Simulation

To link to this article:  http://dx.doi.org/10.1080/19401493.2017.1397196

Published online: 17 Nov 2017.

Submit your article to this journal 

View related articles 

View Crossmark data



Paper P6

82

Journal of Building Performance Simulation, 2017
https://doi.org/10.1080/19401493.2017.1397196

Investigating the performance of scenario-based model predictive control of space heating in
residential buildings

Theis Heidmann Pedersen ∗ and Steffen Petersen

Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, Aarhus C 8000, Denmark

(Received 7 May 2017; accepted 23 October 2017 )

This paper investigates the performance of scenario-based model predictive control (SB-MPC) for space heating operation
to address the inherent uncertainty of weather forecasts and predictions of occupancy. In contrast to existing reported studies,
this study relied on a sophisticated meteorological model and a higher order Markov chain occupancy model to generate
stochastic disturbance scenarios. When applying the SB-MPC scheme for energy-efficient operation, simulation results
suggested a slight increase in energy consumption (from approx. 27.7 kWh/m2 to 28.0 kWh/m2) when using one and 100
disturbance scenarios, respectively, while thermal comfort violations were reduced significantly (from 60°Ch to 10°Ch).
Furthermore, the SB-MPC scheme was tailored to provide demand response and thereby achieved cost savings of 16.1%
and 13.1% compared to conventional proportional-integral control when considering one and 100 disturbance scenarios,
respectively. Choosing the appropriate number of disturbance scenarios thus relies on a consideration of the trade-off between
the acceptable thermal comfort violations and energy-related benefits.

Keywords: energy-efficient control; demand response; weather ensembles; higher order Markov chain; stochastic occu-
pancy model

1. Introduction
Demand-side management (DSM) can assist supply-side
management in maintaining an instantaneous balance
between supply and demand in energy systems with a
high penetration of intermittent renewable energy sources
(Wang, Xue, and Yan 2014). The two main components of
DSM in relation to buildings are energy efficiency where
the energy consumption is minimized, and adjustment of
energy demand to meet supply through demand response
(DR) programs. Several studies have demonstrated that
buildings can meet both DSM objectives when applying
model predictive control (MPC) for heating, ventilation
and air conditioning (HVAC) systems operation (Oldewur-
tel et al. 2012; Corbin, Henze, and May-Ostendorp 2013;
Henze 2013; Tanner and Henze 2014; Mirakhorli and
Dong 2016; Salakij et al. 2016). MPC is an optimization-
based control scheme, which requires a control-model of
the building thermodynamics, measurements of current
building state, forecasts of disturbances (e.g. weather and
occupancy) and explicit constraints on input (e.g. heating
power) and states (e.g. room air temperatures) to determine
a sequence of control inputs.

The theoretical performance bound (PB), i.e. consid-
ering perfect disturbance predictions, of applying MPC
schemes to minimize the energy consumption or to
perform DR has been investigated in several simulation
studies. Sourbron, Verhelst, and Helsen (2013) applied
MPC for heat pump operation in an office building

*Corresponding author. Email: thp@eng.au.dk

equipped with thermo-active building systems that, com-
pared to a rule-based heating/cooling curve controller,
reduced the electricity consumption by 15% while ensur-
ing thermal comfort. Goyal, Ingley, and Barooah (2013)
used MPC with perfect occupancy predictions to operate an
air-handling unit and achieved energy savings of 55–60%
compared to a dual-maximum baseline control. Oldewur-
tel, Sturznegger, and Morari (2013) achieved energy sav-
ings of approx. 30% when considering perfect occupancy
information in the associated MPC scheme compared to
including static occupancy schedules. To investigate the
DR potential of a residential air-conditioning unit, Avci
et al. (2013) used an economic MPC (E-MPC) scheme
together with real-time prices to minimize the operational
cost, which reduced the energy cost with 13% and the
energy consumption at peak-hours with 23.6%. Peder-
sen, Hedegaard, and Petersen (2017b) compared a con-
ventional proportional-integral (PI) controller with an E-
MPC scheme utilizing the day-ahead power market prices
to investigate the DR potential in a residential apart-
ment building prior to and after retrofitting the building
envelope. The simulation results showed that the E-MPC
scheme reduced the energy consumption in peak-hours in
the existing and retrofitted building by approx. 7% and up
to 47%, respectively, while ensuring thermal comfort.

The energy savings and DR potentials identified in the
previously mentioned studies constitute a causal upper the-
oretical bound which, in practice, is unachievable since

© 2017 International Building Performance Simulation Association (IBPSA).
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the control scheme is affected by various structural uncer-
tainties (i.e. building/control-model mismatch) and dis-
turbance prediction uncertainties (i.e. weather forecasts
and stochastic occupancy). The simplest approach to han-
dle these uncertainties is to neglect their presence and
assume that the control-model and disturbance predictions
are equal to certain, often denoted deterministic MPC
(DMPC) (Oldewurtel et al. 2012; Mayne 2014). Maa-
soumy et al. (2014) investigated how the performance of
a DMPC scheme was affected by building/control-model
mismatch and found that DMPC performed well when
the mismatch was limited (presumably because of the
feedback introduced by the receding horizon approach
of MPC), but the theoretical energy saving potential of
37% diminished as the mismatch increased. Goyal, Ingley,
and Barooah (2012b) likewise investigated the influence
of building/control-model mismatch and found that the
energy consumption increased with up to 35% due to dif-
ferent window and door resistances in the building and the
control-model. They also found that occupancy uncertain-
ties led to an increase in energy consumption of up to 25%.
To further investigate the importance of reliable occupancy
predictions, Dobbs and Hencey (2014) integrated an online
inhomogeneous Markov chain occupancy model within a
DMPC scheme, which reduced the space heating consump-
tion by 19% compared to using pre-specified schedules.
Pedersen et al. (2016) also integrated a stochastic occu-
pancy model in a DMPC scheme with the objective of
optimizing the space heating operation of four residen-
tial apartments, which reduced thermal comfort violations
with up to 50% compared to utilizing static occupancy
schedules.

Results from several of the studies mentioned above
indicate that building/control-model mismatch and dis-
turbance prediction uncertainties affect the potential
for DMPC schemes significantly. Consequently, several
approaches have been proposed to overcome the draw-
backs of DMPC. One approach is to guarantee constraint
satisfaction against all possible uncertainty outcomes, so-
called robust MPC, where a min–max problem is solved,
and the optimal control inputs are determined while enforc-
ing constraints for all uncertainty realizations (Mayne
2014; Bayer et al. 2016; Mayne 2016). However, a robust
MPC scheme may be too conservative and thus elimi-
nate the benefits of applying MPC; especially if the set
of possible uncertainty realizations is large since all real-
izations are treated as equally likely (Garatti and Campi
2013). Another less conservative approach is stochastic
MPC (SMPC), which takes the stochastic properties of
the uncertainties into consideration. Furthermore, SMPC
enables probabilistic state constraints, thus allowing the
constraints to be violated with a small probability (so-
called chance constraints) (Farina, Giulioni, and Scattolini
2016). Oldewurtel et al. (2012) proposed an SMPC scheme
where the control inputs were parameterized as affine
functions of the yet unknown disturbances. Simulation

results of a building subject to uncertain weather forecasts
suggested that SMPC was superior to DMPC in terms of
both energy usage and thermal comfort violations. Ma and
Borrelli (2012) applied SMPC to optimize the operation
of an air-handling unit, and found that SMPC achieved
energy savings of 30% compared to a baseline control.
These studies demonstrate that SMPC schemes are supe-
rior to DMPC when the disturbance predictions are subject
to uncertainty. However, the resulting stochastic optimiza-
tion problem with probabilistic constraints is generally
non-convex, except for a few specific cases (Calafoire and
Campi 2006) and thus computationally intractable.

To obtain the advantages of SMPC while overcoming
the computational drawbacks, recent research has focused
on a tractable scenario-based approximation to SMPC.
Scenario-based MPC (SB-MPC), sometimes also denoted
randomized MPC, transforms the original stochastic opti-
mization problem into a convex deterministic problem
with a large number of constraints (Calafoire and Campi
2006; Calafiore 2009; Campi and Garatti 2011; Schildbach
et al. 2014). The large number of deterministic constraints
corresponds to the original constraints evaluated for mul-
tiple realizations of the disturbance outcomes according to
their arbitrary probability density functions. Several stud-
ies have suggested that SB-MPC enables significant energy
savings and thermal comfort improvements. Parisio et al.
(2013, 2014) used SB-MPC to operate an HVAC system in
a laboratory room, and found that SB-MPC led to fewer
thermal comfort violations compared to a conventional
PI controller. Zhang et al. (2013) applied SB-MPC in a
building subject to weather and internal gains uncertainty.
The simulation results suggested that DMPC and SMPC
(as proposed by Oldewurtel et al. 2012) achieved similar
results while both were outperformed by SB-MPC in terms
of achieving energy savings and reducing thermal comfort
violations.

1.1. Aim of this paper
The performance of SB-MPC inherently depends on the
accuracy of the generated disturbance scenarios. Parisio
et al. (2014) and Zhang et al. (2013) used statistical mod-
els to generate occupancy and weather forecast scenarios,
but several studies using DMPC (Dobbs and Hencey 2014;
Pedersen et al. 2016) have suggested to integrate a des-
ignated stochastic Markov chain occupancy model within
the MPC scheme. To the best of the authors’ knowledge,
there have been no reported studies where such a desig-
nated occupancy model has been used to generate occu-
pancy prediction scenarios within an SB-MPC scheme.
This paper, therefore, reports on a simulation-based study
that investigates the performance of an SB-MPC scheme
using a higher order Markov chain occupancy model and
a sophisticated meteorological model to generate distur-
bance scenarios.

Furthermore, MPC schemes have demonstrated signif-
icant potentials for achieving energy savings but, to the
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knowledge of the authors, there have been no reported
studies on how SB-MPC schemes affect the theoretically
identified DR potentials when considering uncertain dis-
turbance scenarios. The SB-MPC scheme was, therefore,
also evaluated in terms of its ability to achieve end-user
cost savings compared to a conventional PI controller.

2. Method
The performance of the SB-MPC scheme was investi-
gated using co-simulation as illustrated in Figure 1. A
residential building (see Section 2.3) located in Aarhus,
Denmark, was modeled in EnergyPlus (EP) and represents
the building to be controlled. The SB-MPC scheme was
implemented in MATLAB and used to operate the space
heating (electrical baseload) of the EP model through co-
simulation facilitated by the Building Controls Virtual Test
Bed (Wetter 2010). The EP model had a time step of
60 seconds, whereas the SB-MPC scheme had a time step
of 60 minutes, i.e. a new space heating control input was
exchanged hourly. Weather data provided by the Danish
Meteorological Institute (2017) for a location in Aarhus
(56°10�22.56��N, 10°8�2.20��E) were used during the sim-
ulation period from 1 January 2016 to 28 February 2016,
which is the coldest period of the heating season in Den-
mark. The following sections provide further information
on the SB-MPC scheme, the disturbance scenarios and the
building used as a test case.

2.1. Scenario-based model predictive control
In the proposed SB-MPC scheme, an optimization prob-
lem for a finite prediction horizon N is solved at each
discrete time step t to determine a sequence of space heat-
ing control inputs u. The control inputs are communicated
to the EP representation in a receding horizon approach,
thus only the first control input is implemented (Oldewurtel
et al. 2012). At the next discrete time step, the optimiza-
tion problem is solved again with a prediction horizon
shifted one time step ahead in time, and with updated
control-model states (see Equation (1)), weather forecast
(see Section 2.2.1) and occupancy predictions (see Section
2.2.2). The different elements of the SB-MPC scheme are
described in the following sections.

Room air measurements: ymeasured

Heating power: ut

Building
representation
(EnergyPlus)

SB-MPC scheme
(MATLAB)

Figure 1. Illustration of the co-simulation process.

2.1.1. Control-model
The SB-MPC scheme relies on a simplified control-model
of the building thermodynamics to optimize the con-
trol inputs. In this study, a grey-box modeling approach
was chosen, which is characterized by having a pre-
specified model structure consisting of physically inter-
pretable parameters that are estimated from measurement
data through methods from the field of system identifica-
tion (Hedegaard and Petersen 2017). A two-state model
representing the lumped thermal capacity of the zone air
and the constructions was used (Pedersen, Hedegaard, and
Petersen 2017b). The state space representation is given in
Equation 1(a) and 1(b) with state matrix A, system states xt
(i.e. room air and construction temperature), input matrix
B, control inputs ut (i.e. space heating power), disturbance
matrix E, disturbances dt (i.e. ambient temperature, direct
and diffuse horizontal solar irradiance and occupancy), out-
put matrix C and output yt (i.e. room air temperature).

xt+1 = A · xt + B · ut + E · dt, (1a)

yt = C · xt. (1b)

The control-model was estimated in continuous time and
then discretized using the zero-order hold method with a
time step of 60 minutes. At each time step, the room air
temperature was measured (ymeasured) and used to update
the states of the control-model for time step t predicted at
the last time step t − 1. The states xt|t−1 was corrected using
a Kalman filter to update the unobserved states according
to Equation (2), where KG is the Kalman gain (Kalman
1960).

xt|t = xt|t−1 + KG · (ymeasured − C · xt|t−1). (2)

2.1.2. Control input and state constraints
The control input ut was restricted by the maximum
design heating power Pmax of the space heating system by
Equation (3).

0 ≤ ut ≤ Pmax. (3)

Ensuring thermal comfort when applying MPC
schemes can be handled in many ways (Pedersen et al.
2017). One approach is to formulate a multi-objective opti-
mization problem, i.e. simultaneously minimize energy-
related costs and thermal comfort violations (Avci et al.
2013; Dobbs and Hencey 2014). Another formulation is to
assume that occupants are comfortable as long as the room
air temperature is within a predefined comfort band defined
by a preferred temperature and an acceptable deviation
from this temperature (Pedersen, Hedegaard, and Petersen
2017b). In this study, the latter formulation was chosen,
which led to a single objective problem formulation. The
comfort band was defined according to Equation (4) by the

D
ow

nl
oa

de
d 

by
 [S

ta
ts

bi
bl

io
te

ke
t T

id
ss

kr
ift

af
de

lin
g]

 a
t 0

7:
18

 1
7 

N
ov

em
be

r 2
01

7 



Paper P6

85

4 T.H. Pedersen and S. Petersen

lower (Tmin) and upper (Tmax) comfort bounds.

Tmin ≤ yt ≤ Tmax. (4)

The comfort bounds were time invariant, thus not
allowing for comfort bound setbacks if the room was
predicted to be vacant. This was chosen to ease the inter-
pretation of the results as the main aim of this study was
to evaluate the SB-MPC scheme – not the occupancy
prediction model.

2.1.3. Control scheme formulation
Scenario-based programs (SB-P) are a tractable approx-
imation to a chance constrained optimization problem
(CCP) that, with a high probability, computes a feasible
solution to the original CCP. SB-P replaces the proba-
bilistic state constraints with K deterministic constraints
corresponding to δ(1), . . . ,δ(K) ∈ � disturbance realiza-
tions (Calafoire and Campi 2006; Calafiore 2009; Campi
and Garatti 2011; Zhang et al. 2013; Zhang et al. 2015).
For convenience, the disturbance realizations are combined
into full prediction horizon multi-samples in Equation (5),
also called scenarios.

ω
(k)
t = {δ(k)

1|t , . . . , δ(k)
N |t}. (5)

Each of the K number of disturbance scenarios will lead
to K different state trajectories predicted by the control-
model (Equation (1)) corresponding to each disturbance
scenario ω

(k)
t . Consequently, the optimal control inputs

are determined so all state trajectories satisfy the state
constraints (Equation (4)). Using Equations (1)–(5), the
resulting SB-MPC formulation at time step t for a pre-
diction horizon N and using K number of disturbance
scenarios is specified in Equation 6(a–f). The disturbance
matrix E was discretized using a time step of 15 minutes,
recognizing that occupancy can change significantly dur-
ing the 60-minute time step of the SB-MPC scheme. The
vector c is the cost signal containing the price, not nec-
essarily money (see Sections 2.3.1 and 2.3.2), associated
with the control input for time step t + n forecasted at time
step t.
SB-P[ω]:

minimize
u0|t,...,uN |t

J =
K∑

k=1

N−1∑
n=0

cn|t · un|t

subject to ∀k = 1, . . . , K , ∀n = 0, . . . , N − 1,
(6a)

x(k)
n+1|t = A · x(k)

n|t + B · un|t + E · ω
(k)
n|t , (6b)

y(k)
n|t = C · x(k)

n|t , (6c)

0 ≤ un|t ≤ Pmax, (6d)

Tmin ≤ y(k)
n|t ≤ Tmax, (6e)

x(k)
0|t = x0|t−1 + KG · (ymeasured − C · x0|t−1). (6f)

2.1.4. Number of scenarios
Choosing the appropriate K number of scenarios to ensure
that the solution to SB-P[ω] with high probability is a
feasible solution to the original CCP is a topic of great
research concern (Calafoire and Campi 2006; Calafiore
2009; Campi and Garatti 2011; Zhang et al. 2015). Intro-
ducing the confidence parameter β ∈ [0,1] which bounds
the risk of failure and the violation probability � that repre-
sents a trade-off between cost function minimization and
level of constraint satisfaction, Calafiore (2010) showed
that if K satisfies Equation (7), the solution to SB-P[ω]
is feasible to the original CPP(�) with confidence at least
1 −β.

K ≥ 2
ε

(
ln

(
1
β

)
+ ζ − 1

)
, (7)

where ζ is Helly’s dimension of SB-P[ω] (Zhang et al.
2015). Computing ζ explicitly is, in general, very dif-
ficult; but ζ is upper bounded by the number of deci-
sion variables (Zhang et al. 2015). However, experiences
from applying SB-MPC schemes for HVAC operation sug-
gest that Equation (7) may be too pessimistic and that
K could be chosen much smaller (Zhang et al. 2013),
presumably because of the buildings’ slow thermodynam-
ics and the feedback introduced by the receding horizon
approach.

2.2. Disturbance scenario
The disturbance scenarios consist of four disturbances:
ambient temperature (Ta), direct horizontal solar irradiance
(Pdir), diffuse horizontal solar irradiance (Pdif) and occu-
pancy (Pocc). The predictions of occupancy were generated
using a designated occupancy model (see Section 2.2.2),
whereas the three weather forecasts were provided as
weather ensembles (see Section 2.2.1). Since the weather
ensembles and occupancy predictions originated from two
distinct models, it was possible to differ the number of
considered weather forecasts (Kw) and occupancy predic-
tions (Kocc). The resulting number of disturbance scenarios
therefore followed Equation (8).

K = Kw · Kocc. (8)

Forecasts for each of the four disturbances at time step
t during the prediction horizon N were collected and
constituted one of K scenarios, see Equation (9).

T(kw)
a [t] = {T(kw)

a [t + 1], T(kw)
a [t + 2] . . . , T(kw)

a [t + N ]}
∀kw = 1, . . . , Kw, (9a)

P(kw)
dir [t] = {P(kw)

dir }{[t + 1], P(kw)

dir [t + 2] . . . , P(kw)

dir [t + N ]},
(9b)
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P(kw)
dif [t] = {P(kw)

dif [t + 1], P(kw)

dif [t + 2] . . . , P(kw)

dif [t + N ]},
(9c)

P(kocc)
occ [t] = {P(kocc)

occ [t + 1], P(kocc)
occ [t + 2] . . . , P(kocc)

occ [t + N ]}
∀kocc = 1, . . . , Kocc, (9d)

ω(k)[t] =

⎡
⎢⎢⎢⎢⎢⎣

T(kw)
a [t]

P(kw)
dir [t]

P(kw)
dif [t]

P(kocc)
occ [t]

⎤
⎥⎥⎥⎥⎥⎦

∀kw = 1, . . . , Kw, ∀kocc = 1, . . . , Kocc.

(9e)

The following sections describe the weather ensembles
and the higher order Markov chain occupancy model used
to establish the K number of disturbance scenarios in the
associated SB-MPC scheme.

2.2.1. Weather ensembles
A series of weather forecast ensembles, each consisting of
25 forecasts with hourly point values of ambient temper-
ature [K], wind speed [m/s], global horizontal irradiance
[W/m2] and relative humidity [%], was provided by the
Danish Meteorological Institute (2017). The 25 weather
forecasts in an ensemble were generated with the HIRLAM
numerical weather prediction model (Undén et al. 2002) by
perturbing the initial conditions. Each forecast had a hori-
zon of 54 hours, and a new ensemble was generated every
sixth hour. Utilizing weather forecasts from the sophisti-
cated HIRLAM weather model naturally captured cross-
correlations between the weather variables. A randomly
selected forecast was assumed to be the ‘actual’ weather,

thus the 24 remaining forecasts were used as weather fore-
cast scenarios. An example of the ‘actual’ weather and 24
forecasts in one ensemble is displayed in Figure 2.

A boxplot of the differences between the forecast and
the ‘actual’ weather is depicted in Figure 3 for 236 ensem-
bles. The red line indicates the median, the box indicates
the interquartile range (IQR) between the first and third
quantile, the whiskers constitute 1.5 × IQR, and outliers
are illustrated by points. It is noted that the hours where
the solar irradiance equaled 0 W/m2 (i.e. night-time) were
omitted. Figure 3 shows that the IQR between the ambient
temperature forecasts and the ‘actual’ weather was gener-
ally less than 1 K, and that the discrepancy is lower within
the first six hours compared to the remaining forecast hori-
zon. The highest discrepancies between the forecasted and
‘actual’ global irradiance are expected around noon where
the highest absolute irradiance occurs. This is also the
reason for the observed oscillating tendency. Since the
forecasts were generated every sixth hour, i.e. at 06:00,
12:00, 18:00 and 24:00, the highest discrepancies will be
located at multiples of six.

As specified in Equation (9), the disturbance scenarios
consist of the ambient temperature and the direct and dif-
fuse horizontal radiation. The global horizontal irradiance
provided by the weather forecast service was therefore
split into direct and diffuse horizontal irradiance using
‘the clearness of sky’ index (Reindl, Beckman, and Duffie
1990; Badescu 2008).

2.2.2. Markov chain occupancy model
Developing a reliable occupancy model is difficult because
of the stochastic nature of humans. Many existing occu-
pancy models for building simulation are based on the
principles of the model proposed by Page et al. (2008)
(referred to as Page-model) (e.g. Liao, Lin, and Barooah
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Figure 2. Example of the ‘actual’ and forecasted weather in one ensemble.
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Figure 3. Weather forecast errors as a function of the forecast horizon.

2012; Chen, Xu, and Soh 2015; Feng, Yan, and Hong 2015;
Mahdavi and Tahmasebi 2015; Tahmasebi and Mahdavi
2016). The Page-model relies on the assumption that occu-
pancy in a time step only depends on the occupancy state
at the preceding time step (first-order Markovian property),
and was developed to evaluate building designs in terms
of robustness towards stochastic user behaviour. Mahdavi
and Tahmasebi (2015), however, investigated the use of the
Page-model in building systems control compared to a non-
probabilistic model, and found that the stochastic elements
of the Page-model did not necessarily lead to a superior
predictive performance, suggesting that the Page-model
resulted in overly random occupancy predictions. Flett and
Kelly (2016) proposed a higher order Markov chain model
which also considered the duration of the occupancy state
beyond the preceding time step. Using UK Time Use Sur-
vey data for 2500 persons, the authors found that the higher
order Markov chain model performed moderately better
than the first-order model. However, the aim of the model
was not for control purposes.

In this study, a higher order inhomogeneous Markov
chain model was used, which at each discrete time step
yielded a binary occupancy state of either γ t = 0 (absent)
or γ t = 1 (present). The probability of changing or contin-
uing the occupancy state is described by transition proba-
bilities p that depend on the current occupancy state, type
of day, time of day and duration of the existing state. The
principle of a higher order Markov chain is illustrated in
Table 1 when the current state is present.

The transition probabilities were collected in a transi-
tion matrix T (Equation (10)). Table 1 illustrates the second

Table 1. Principle of higher order Markov chain occupancy
model.

Future stateCurrent state
γ t = 1
(present)

Duration
(hours)

γ t+1 = 0
(absent)

γ t+1 = 1
(present)

0–1 p(1)
1→0 p(1)

1→1
1–2 p(2)

1→0 p(2)
1→1

2–4 p(4)
1→0 p(4)

1→1
4–6 p(6)

1→0 p(6)
1→1

6 + p(6+)
1→0 p(6+)

1→1

row of T, but the same principle goes for the first row, i.e.
when the current state is absent. The initial estimate of the
transition matrix entries was the identity matrix, imply-
ing that the best guess of the future occupancy state is
the current state, which has demonstrated satisfying results
when used in an MPC scheme (Goyal, Ingley, and Barooah
2012a).

T =
[

p0→0(day, t, dur) p0→1(day, t, dur)
p1→0(day, t, dur) p1→1(day, t, dur)

]
. (10)

Since each row of T sums to one, only p0→1 and p1→0
need to be calculated. The value of p0→1 was only updated
if the state changed from absent, and p1→0 only changed
if the current state was present. The transition probabili-
ties followed a binomial distribution with two outcomes:
continuing or changing state. Thus, the maximum likeli-
hood estimate of p0→1 is simply the proportion of state
transitions from vacant to present within a specific time
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Figure 4. Test case geometry as modeled in EP with applied apartment numbering (Pedersen, Hedegaard, and Petersen 2017a, 2017b).
Top: East facade. Bottom: West facade.

Table 2. Specification of input and state constraints.

Zone Area (m2) Pmax (W) Tmin (°C) Tmax (°C)

Apartment 1 81 4050 20 24
Apartment 2 94 4700 22 26
Apartment 3 81 4050 20 24
Apartment 4 94 4700 22 26
Apartment 5 81 4050 20 24
Apartment 6 94 4700 22 26
Apartment 7 81 4050 20 24
Apartment 8 94 4700 22 26
Apartment 9 50 2500 20 24
Apartment 10 94 4700 22 26

interval and conversely for p1→0. It was assumed that
the transition probabilities were periodic with a period of
24 hours. However, a distinction between workdays and
weekends was made. The occupancy state was established
at each time step based on real-time CO2 measurements
using the detection method described by Pedersen, Nielsen,
and Petersen (2017). Historical detections were used to
train the transition probabilities prior to operation, while
real-time CO2 measurements were used to train the model
continuously during operation, thus enabling the model to
adapt to changes in room usage.

Updates of transition probabilities and predictions of
occupancy were drawn according to Algorithm 1 for a
prediction horizon N and K number of disturbance scenar-
ios using the inverse function method (IFM) (Page et al.
2008).

2.3. Case study
A residential four-story apartment building constructed in
1978 located in Aarhus, Denmark, was used as a test case.
The building has east–west-oriented window configura-
tions and west-oriented open balconies, see Figure 4. To
simplify the modeling and simulation, only the third floor
was investigated, which consists of one 2-room apartment
(9), four 3-room apartments (1, 3, 5 and 7), five 4-room

Algorithm 1: Breakdown of occupancy model.

for each time step t = 1, 2, . . . do
get current occupancy state γt
if γt �= γt−1 then

update transitions probabilities
end
for each scenario k = 1:K do

if γt equals γ
(k)
t|t−1 and t > 1 then

for prediction time step n = 0:N-2 do
γ

(k)
t+n|t = γ

(k)
t+n|t−1

end
deduce occupancy state γ

(k)
t+N−1|t

using IFM
else

for prediction time step n = 0:N-1 do
deduce occupancy state γ

(k)
t+n|t

using IFM
end

end
end

end

apartments (2, 4, 6, 8 and 10) and five stairwells (S). The
stairwells were kept at a minimum temperature of 15°C.
The apartments were modeled as individual thermal zones,
and all horizontal zone boundaries (i.e. ceiling and floor)
were assumed adiabatic. Detailed descriptions of materi-
als, constructions and systems are provided in Pedersen,
Hedegaard, and Petersen (2017a, 2017b).

As described in Section 2.1.2, the space heating
control inputs were restricted by the maximum heating
power which differs for the apartments as specified in
Table 2. Furthermore, the time invariant thermal comfort
bounds are listed in Table 2, which also differ across the
apartments.
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Figure 5. Number of occupants during the simulation period.

2.3.1. Occupancy schedules
As described earlier, occupancy detections were estab-
lished based on CO2 measurements using the method
described by Pedersen, Nielsen, and Petersen (2017) and
assumed to be the ground truth. In this study, real CO2 mea-
surements from four single-person apartments were used as
a basis for generating four ground truth occupancy sched-
ules. These schedules were then combined randomly for
each of the 10 apartments (where the maximum number of
occupants was one, two and three for the 2-, 3- and 4-room
apartments, respectively), assuming that the presence of
individual occupants was independent. At each time step,
the presence of occupants in the apartments was commu-
nicated to the EP representation where each occupant was
assumed to generate 100 W. Figure 5 displays the percent-
age of time during which the apartments were vacant and
occupied during the simulation period.

Since the presence of each occupant was assumed to
be independent, it was straightforward to extend the occu-
pancy model described in Section 2.2.2 to cope with mul-
tiple occupants. A transition matrix T was established for
each occupant, and the resulting apartment state was deter-
mined by adding separate patterns for several occupants for
each apartment.

2.3.2. Energy efficiency potential
The SB-MPC scheme was first evaluated in terms of its
ability to enable energy efficiency while restricting the
room air temperature to be within the specified thermal
comfort band according to Table 2. The most energy-
efficient control approach is to track the lower thermal
comfort bound, which was investigated by using a constant
cost signal c (see Equation (6)). The prediction horizon N
could be chosen small (chosen to be 24 hours) since the

objective of the SB-MPC scheme was to keep a constant
temperature without any chance of temperature setback.

2.3.3. DR potential
As described in the Introduction, the control scheme’s abil-
ity to enable DR was also investigated. Evaluating the
benefits of DR strongly depends on the chosen baseline. In
Denmark, one of the most common space heating controls
is conventional PI control which therefore was chosen to
represent the baseline. Furthermore, many objectives can
be considered when evaluating the potential for DR (Ped-
ersen, Hedegaard, and Petersen 2017b). In this paper, the
objective was to achieve end-user cost savings compared
to the baseline PI controller. Historical day-ahead market
prices acquired through the Danish TSO, Energinet.dk and
Nord Pool spot for the bidding area DK1 were used as cost
signal c (see Equation (6)). Since taxation is very country
specific, taxation was omitted in this study to generalize the
interpretation of the results; thus, results presented in abso-
lute values cannot be directly compared to the actual price
paid by building owners. Furthermore, perfect price pre-
dictions were assumed. To minimize the operational cost,
the control scheme uses the thermal capacity of the struc-
tural mass as storage by charging and discharging it with
the room heating system in periods with low or high prices,
respectively. A prediction horizon N of 72 hours was,
therefore, chosen to enable the control scheme to exploit
the slow dynamics of the structures.

Furthermore, previous studies have suggested that the
potential for DR (i.e. quantity and duration) is affected by
the energy efficiency of the building envelope (Pedersen,
Hedegaard, and Petersen 2017b). The performance of the
proposed SB-MPC scheme was, therefore, evaluated based
on simulations of the existing building and of a retrofitted
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Figure 6. Performance of the occupancy model.

building with energy-efficient windows, additional exter-
nal facade insulation, a reduced infiltration rate, and a
mechanical constant air volume ventilation rate of 0.5 h−1

with 80% heat recovery efficiency (denoted retrofit 8 in
Pedersen, Hedegaard, and Petersen 2017a, 2017b).

3. Results
The following sections present the simulation results for
the case building. First, the performance of the occupancy
model was evaluated, and then the performance of the
SB-MPC scheme was evaluated in terms of its ability to
achieve energy and cost savings.

3.1. Occupancy model
Figure 6 displays the percentage of time with correct and
incorrect predictions as a function of the forecast horizon

for three apartments. Figure 6(a) shows that the occupancy
model for a one-person apartment yielded the best predic-
tions of occupancy a couple of hours ahead in time and then
the accuracy dropped and stagnated at approx. 60%. The
occupancy model predicted a fairly equal amount of false
negatives and positives, thus the model was not biased
towards a specific occupancy prediction error. The same
tendency is observed in Figure 6(b) and 6(c) for apart-
ments occupied by two and three persons, respectively. As
the number of occupants increased, only a limited share
of incorrect apartment state predictions (i.e. ± 2 and ± 3
occupants, respectively) was obtained.

3.2. Energy efficiency
The mechanism of the SB-MPC scheme is displayed in
Figure 7 for a 24-hour period with perfect occupancy
predictions but uncertain weather forecasts. The top and
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Figure 7. Predicted and simulated air temperature for apartment 9 during a 24-hour period.

bottom charts show the predicted and the resulting EP sim-
ulated room air temperature when considering one weather
forecast (i.e. K = 1, corresponding to DMPC) and 15
weather forecasts, respectively. Comparing the resulting
room air temperatures shows that the SB-MPC scheme
always planned the operation so the predicted state trajec-
tories comply with the lower comfort bound. Nevertheless,
the scenarios did not always capture the entire uncertainty
spectrum (as would be the case for robust MPC) illustrated
by the violations of the lower comfort band. However,
increasing the number of disturbance scenarios led to fewer
violations of the lower comfort bound.

The summarized thermal comfort violations and energy
consumption for the existing building during the entire
simulation period are displayed in Figure 8 as a func-
tion of the number of scenarios. Since the K number of
disturbance scenarios was randomly selected, the result-
ing optimal solution is a random variable that depends on
the disturbance scenario selection. Therefore, the results
are shown for five simulations with the same configura-
tions together with their mean. The dashed line indicates
the theoretical PB, i.e. considering perfect disturbance pre-
dictions. Due to mismatch between the control-model and
the EP representation, a certain amount of thermal comfort
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Figure 8. Summarized thermal comfort violations and energy consumption for all 10 apartments as a function of the number of scenarios.
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Figure 9. Simulation results from apartment 9 for the retrofitted building using a PI controller and the SB-MPC scheme with a different
number of scenarios.

violations was obtained even for the PB. Figure 8 shows
results for three cases:

(a) Uncertain weather forecasts with perfect occu-
pancy predictions.

(b) Uncertain occupancy predictions with perfect
weather forecasts.

(c) Uncertain weather forecasts and occupancy predic-
tions.1

The results show that using only one disturbance sce-
nario led to an increase in thermal comfort violations of
up to a factor of three compared to the PB. As the num-
ber of scenarios increased, the thermal comfort violations
decreased and became even lower than the PB. The rea-
son was that the increased number of disturbance scenarios
occasionally led to an overestimation of the space heat-
ing requirement which then compensated for the mismatch
between the control-model and EP. Furthermore, the vari-
ation in the simulation results diminished as the number of
scenarios increased. However, the introduced conservatism
using an increased number of scenarios led to an increase
in the overall energy use. This indicates a certain trade-
off between the acceptable level of comfort violations and
achieved energy savings.

3.3. DR potential
Figure 9 displays the mechanism of a conventional PI con-
troller and the SB-MPC scheme for the retrofitted building
subject to uncertain weather forecasts and occupancy pre-
dictions. The top chart shows the room air temperature,
the middle chart shows the heating consumption and the
bottom chart shows the time varying cost signal. The PI
controller maintained a room air temperature near the spec-
ified lower comfort bound at all times (the small deviations
were due to abrupt changes in occupancy), resulting in a
fairly smooth heating pattern. The SB-MPC scheme, how-
ever, increased the room air temperature at times when
prices were low and thereby exploited the structural ther-
mal mass, which then reduced the need for space heating
in the following high-price periods. Because of the high
energy efficiency of the retrofitted building envelope, the
heating consumption following a boosting period was often
negligible.

On several occasions, multiple scenarios (K = 100)
ensured compliance with the upper comfort constraint
(dashed line in Figure 9), whereas the SB-MPC scheme
using only one disturbance scenario (K = 1) violated the
comfort constraint on multiple occasions.

The summarized operational costs and mean thermal
comfort violations for all apartments during the simulation
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Table 3. Summarized operational costs and mean thermal comfort violations for all 10
apartments.

Operational
cost

Cost
savings

Comfort
violations

Comfort
difference

Existing building
Baseline (PI) e534 12.2°Ch
SB-MPC (K = 1) e519 e15 (2.8%) 27.1°Ch 14.9°Ch (122.1%)
SB-MPC (K = 9) e523 e11 (2.1%) 15.1°Ch 2.9°Ch (23.8%)
SB-MPC (K = 100) e527 e7 (1.3%) 8.6°Ch − 3.6°Ch ( − 29.5%)
PB e520 e14 (2.6%) 14.0°Ch 1.8°Ch (14.8%)
Retrofitted building
Baseline (PI) e137 20.6°Ch
SB-MPC (K = 1) e115 e22 (16.1%) 28.4°Ch 7.8°Ch (37.9%)
SB-MPC (K = 9) e118 e19 (13.9%) 20.7°Ch 0.1°Ch (0.5%)
SB-MPC (K = 100) e119 e18 (13.1%) 15.6°Ch − 5.0 °Ch ( − 24.3%)
PB e116 e21 (15.3%) 17.7°Ch − 2.9°Ch ( − 14.1%)

period for both the existing and retrofitted building are
listed in Table 3. The presented results are the mean of
five simulations with the same configurations. The cost
savings and differences in thermal comfort violations com-
pared to the conventional PI controller are also specified.
The results show that using one scenario led to the highest
cost savings and an increase in thermal comfort viola-
tions for both buildings. Using nine and 100 scenarios
reduced the thermal comfort violations significantly while
only reducing the cost savings moderately.

4. Discussion
The results indicated that the introduction of multiple dis-
turbance scenarios reduced comfort violations significantly
while only increasing energy consumption incrementally
(see Figure 8). The reason for the sensitivity towards com-
fort violations is the structure of the SB-MPC scheme
in which the space heating control input is a decision
variable whereas thermal comfort is treated as a state con-
straint. The consequence of this structure is that deviations
between predicted and actual disturbances can lead to a
control input that is insufficient to fulfil the comfort con-
straints in the actual apartment. Given the 60-minute time
step of the SB-MPC scheme, it takes one hour before the
control scheme can correct the space heating control input,
potentially resulting in comfort violations during the entire
hour.

Figure 8 also indicated that the moderate increase in
energy consumption using SB-MPC was most sensitive to
uncertainties associated with occupancy predictions while
the uncertainties associated with the weather forecasts
caused most thermal comfort violations. The reason was
that the SB-MPC scheme, at times with significant distur-
bance uncertainties, ensured compliance with the comfort
bounds even for the least favourable considered distur-
bance scenario. Since the internal gain originating from
the occupant metabolic rate covers a significant share
of the total heating demand (100 W pr. occupant), this

would cause the SB-MPC to overestimate the space heat-
ing demand to ensure compliance with the lower comfort
bound even for the fewest number of predicted occupants.
However, the uncertainties associated with the weather
forecast scenarios had a lesser absolute influence on the
control inputs.

The results also indicated that SB-MPC displays sim-
ilar space heating behaviour regardless of the number of
scenarios used (see Figure 9). Using SB-MPC with mul-
tiple disturbance scenarios compared to DMPC (K = 1)
did not affect the times at which boosting occurred but
merely the amplitude of the control inputs, to ensure
compliance with the thermal comfort bounds. A practi-
cal and computationally tractable alternative to SB-MPC
could therefore be to implement DMPC together with a
low-level PI controller, which could ensure a minimum
of thermal comfort violations when the DMPC scheme
underestimates/overestimates the disturbances.

5. Conclusion
This simulation-based study investigated the performance
of an SB-MPC scheme using a sophisticated metrologi-
cal model and a higher order Markov chain occupancy
model to generate disturbance scenarios. The results sug-
gest that choosing the appropriate number of disturbance
scenarios relies on a consideration of the trade-off between
the amount of acceptable thermal comfort violations and
potential energy-related benefits. Furthermore, interpreta-
tion of the results indicates that future work should inves-
tigate whether SB-MPC could be substituted with the less
computationally demanding DMPC in connection with a
low-level PI controller.
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Nomenclature
Abbreviations

DSM demand-side management
DR demand response
MPC model predictive control
PB performance bound
E-MPC economic model predictive control
DMPC deterministic model predictive control
SMPC stochastic model predictive control
SB-MPC scenario-based model predictive control
EP EnergyPlus
CCP chance constrained program
SB-P scenario-based program
IQR interquartile range
IFM inverse function method
TSO transmission system operator

Symbols
t discrete time step SB-MPC scheme (60 min)
A state matrix
xt + n|t state vector predicted for time step t + n at time

step t
B input matrix
u control input vector
E disturbance matrix
d disturbance vector
KG Kalman gain
K number of disturbance scenarios
ω(k) kth number of disturbance scenarios
N prediction horizon
c cost signal vector
γ occupancy state
T transition matrix
pz→w transition probability from occupancy state z to w

Note
1. The x-axis describes the number of disturbance scenarios for

each uncertain disturbance according to Equation (8), thus K
equals x2 for case c).
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The effect of including hydronic radiator dynamics in model predictive control of
space heating

Theis Heidmann Pedersen 1, Rasmus Elbæk Hedegaard, Kristian Fogh Kristensen, 

Benjamin Gadgaard, Steffen Petersen

Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark

_________________________________________________________________________

Abstract

Existing simulation-based studies on applying model predictive control (MPC) schemes for space heating

operation to enable demand response (DR) make use of linear models for the heating system, usually by 

assuming convective electrical baseboard heaters. However, buildings connected to district heating networks 

are typically equipped with hydronic heat emitters, such as radiators, that are nonlinear in their behavior. This 

paper therefore investigates the effect of including the nonlinear dynamics of a hydronic heat emitter on the 

DR potential of MPC for space heating. Furthermore, the performance of a practical two-level control approach

suitable for real application, in which a heating setpoint was determined by a linear MPC and communicated 

to a conventional proportional integral controller, was investigated. The simulation framework for the 

investigation was based on the application of an experimentally obtained hydronic radiator model applied in 

different co-simulation setups, featuring a model of a poorly and a highly insulated apartment, respectively.

The results indicated that inclusion of the nonlinear thermal effects of hydronic radiators did not significantly

affect the DR performance when compared to the results of an MPC scheme controlling convective electrical 

baseboard heaters. In general, both setup achieved operational cost savings of approx. 5% and 18% in an 

existing and retrofitted building, respectively, while restricting the amount of thermal comfort violations to a 

limited extent. This suggests that results obtained in previous studies featuring electrical baseboard heaters 

also apply to buildings equipped with hydronic heating systems, and that future simulation-based studies and 

practical implementation of MPC for space heating can continue to rely on the use of far less computationally 

demanding linear control-models. Furthermore, the results suggest that the two-level control scheme seems 

like an appropriate control setup suitable for real applications.

Keywords: model predictive control; demand response; dynamic radiator model; space heating; hydronic 

heating; 

1 Corresponding author. Tel: +45 20822070
E-mail address: thp@eng.au.dk
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Nomenclature

Abbreviations
DR
MPC
E-MPC
DH
N-MPC
PRBS
PRMS

Demand response
Model predictive control
Economic model predictive control
District heating
Nonlinear model predictive control
Pseudo-random binary signal
Pseudo-random multi-level signal

Symbols
τ
t
T
Ns
C
cp
ρ
q
Q 
ɸ
n
∆tar
∆tlg
βC
βR
A
xτ+n|τ
B
u
E
d
KG

Time step 
Temperature 
Temperature 
Number of sections
Heat capacity
Specific heat capacity
Density
Flow rate
Energy
Heat power
Radiator exponent
Arithmetic temperature difference
Logarithmic temperature difference
Fraction of convective heat emission
Fraction of radiative heat emission
State matrix
State vector predicted for time step τ+n at time step τ
Input matrix
Control actions vector
Disturbance matrix
Disturbance vector
Kalman gain

[seconds] 
[°C]
[K]
[-]
[J/K]
[J/(kg·K)]
[kg/m3]
[m3/s]
[J]
[W]
[-]
[°C]
[°C]
[-]
[-]

Subscripts
j
inlet
outlet
w
N

Section number
Inlet water temperature
Outlet water temperature
Water
Nominal (standard conditions)
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1 Introduction

Demand response (DR) programs where building owners adjust their consumption in response to an external 

request have been proposed in several studies to overcome challenges related to power imbalances and peak 

load issues in the electricity grid, e.g. [1, 2] to mention a few. However, district heating (DH) networks may 

also benefit from building owners participating in DR programs as DH networks, in the near future, will be 

strongly coupled with the electricity grid to increase integration of renewable energy sources [3, 4]. Several 

studies have thus investigated the ability of buildings to provide DR using thermal energy storages, including 

both active storage (e.g. domestic hot water tanks) [5, 6] and passive storage obtained by exploiting their

thermal mass [7-13].

Several control approaches can be used to enable DR of which especially the concept of model 

predictive control (MPC) has received significant research attention lately [7, 8, 11, 12].  MPC is an 

optimization-based control scheme that relies on a simplified control-model of the building thermodynamics 

to determine an optimal control strategy. Knudsen and Petersen [5] applied an economic MPC (E-MPC)

scheme with the objective of minimizing operational costs of domestic hot water preparation in an ultra-low 

temperature DH system. Considering time varying electricity and district heating prices, the proposed E-MPC 

scheme simultaneously enabled load-shift from peak periods and operational cost savings of approx. 5%. Avci 

et al. [11] applied E-MPC together with day-ahead electricity prices to minimize the weighted sum of the 

operational cost and the temperature deviations from a preferred room air setpoint. Applying the proposed E-

MPC scheme to operate an AC unit reduced the energy consumption in peak-hours by 23.6% compared to a 

conventional two-position control approach. Pedersen, Hedegaard and Petersen [7] applied E-MPC and day-

ahead wholesale electricity prices for optimal operation of convective electrical space heaters in ten 

apartments. Compared to a conventional constant setpoint tracking proportional-integral (PI) controller, the E-

MPC scheme achieved load reductions of up to 47% in peak load periods, depending on the energy efficiency 

and, accordingly, the storage efficiency of the building envelope. However, as suggested by Le Dréau and 

Heiselberg [9], the type of heat emitter significantly affects the magnitude and duration of DR events. They 

applied rule-based control to increase and decrease the temperature setpoint for varying durations using two 

types of heat emitters (i.e. radiators and underfloor heating), and found that the modulation potential differed 

significantly for the two considered heat emitters.

Existing simulation studies on applying E-MPC schemes to operate the space heating system to enable

DR make use of convective electrical baseboard heaters that behave linearly. However, typical heating systems

in buildings connected to DH networks consists of hydronic heat emitters, such as radiators, that are

characterized by nonlinearities in their heat output, driven by the temperature difference between the radiator 

and room. Using E-MPC for real applications to operate hydronic heat emitters therefore introduces 

nonlinearities that, consequently, lead to a less practical and computationally demanding nonlinear MPC (N-

MPC) scheme.
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To the best of the authors’ knowledge, there are no reported studies on whether the nonlinear dynamics 

of a hydronic heat emitter affect the potential of DR when exploiting the structural thermal mass to shift energy 

consumption in buildings. This paper therefore reports on a simulation-based study, applying an N-MPC 

scheme with the objective of minimizing operational cost to investigate the effect of the DR potential.

Furthermore, the performance of a two-level MPC scheme suitable for real applications, which allow for a

practical coupling between the MPC scheme and existing setpoint-tracking controllers was evaluated.

2 Method

A dynamic radiator model was needed to accurately evaluate the impact of hydronic heating systems; therefore

this paper first presents a nonlinear radiator model that adequately represents the thermodynamics of a hydronic 

radiator (section 2.1). Subsequently, three MPC scheme setups were formulated: a linear MPC scheme, a two-

level MPC scheme, and an N-MPC scheme (section 2.2). The performance of the three setups was investigated 

through co-simulations facilitated by the Building Controls Virtual Test Bed [15] of an apartment located in 

Aarhus, Denmark (see section 2.3). The apartment was represented by an EnergyPlus (EP) model while the

dynamic radiator model and the MPC schemes were implemented in MATLAB.

2.1 Dynamic radiator model

A nonlinear grey-box model of a particular hydronic panel radiator (DeLonghi Radel type 22 [16]) was 

established. The thermal behavior of the radiator was modeled as a system of nonlinear ordinary differential 

equations based on the laws of thermodynamics [17], thus the radiator was lumped into NS equally sized 

homogeneous horizontal sections in serial connection. The particular radiator dimensions and inlet/outlet

locations are illustrated in Fig. 1. Preliminary thermographic investigations confirmed that the assumption 

about approximately homogeneous horizontal sections of this specific radiator was acceptable (see Fig. 2).

Fig. 1. Principle of the dynamic radiator model exemplified with NS = 5 horizontal sections with different temperatures 
t. The octagons mark the position of nine thermocouples (type K) used to measure the surface temperature.
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However, it is noted that the modeling was specific to this particular radiator since model parameters, such as 

heat capacity and nominal power, vary with the size of the radiator while position of the inlet and outlet affects

the charging pattern, i.e. the stratification in the radiator.

Fig. 2. Thermographic images during heat-up. Left) after 5 minutes. Right) after 8 minutes.

The energy balance of each section was expressed as an ordinary differential equation (see Eq. (1)), where 

Qstored denotes the stored heat, and φin and φout denote the power flowing in and out of the radiator, respectively. 

The ordinary differential equation is specified in detail for the j’th section of the radiator in Eq. (2) (see 

Appendix A for the full set of radiator model equations). CRad is the combined heat capacity of the water and 

radiator material, q is the flow rate, while cp,w and ρw are the specific heat capacity and density of the water, 

respectively. The nominal power of the radiator determined at standard conditions is denoted ɸN, while ∆tar,N

and n are the arithmetic temperature difference at standard conditions and the radiator exponent, respectively.

The water in each radiator sub-section was assumed incompressible and fully mixed, thus the entire water-

volume in each section j has temperature tj (see Fig. 1).
𝑑𝑑𝑑𝑑𝑄𝑄𝑄𝑄stored

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
= �ɸin −�ɸout

(1)

𝐶𝐶𝐶𝐶Rad
𝑁𝑁𝑁𝑁S

∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡j
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝,w ∙ 𝜌𝜌𝜌𝜌w ∙ 𝑞𝑞𝑞𝑞 ∙ �𝑡𝑡𝑡𝑡j−1 − 𝑡𝑡𝑡𝑡j� −
ɸN
𝑁𝑁𝑁𝑁S

∙ �
𝑡𝑡𝑡𝑡j − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(2)

The model requires the inlet temperature (tj-1 for the first section, see Appendix A), the room temperature and 

the flow rate as inputs. The output of the model is the temperature of the water in the last section, which is 

assumed to be equal to the outlet water temperature. Modeling the outlet water temperature enables a simple 

calculation of the heating power to the room, which equals the change in energy of the water (see Eq. (3)).

ɸRad = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝,w ∙ 𝜌𝜌𝜌𝜌w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡inlet − 𝑡𝑡𝑡𝑡outlet) (3)

The heating power is delivered to the room by convective and radiative heat transfer. The fraction of convection 

and radiation denoted βC and βR, respectively, depend on the radiator and room temperature conditions. 

Knowing βR,N, i.e. the radiative fraction at standard conditions, enables the calculation of βR according to Eq.

(4) [18]. In this study, βR,N was assumed to be 0.3 which is in accordance with other studies [19, 20] for a 

double panel radiator.
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𝛽𝛽𝛽𝛽R = 𝛽𝛽𝛽𝛽R,N ∙

�𝑇𝑇𝑇𝑇room + ∆𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�
4 − 𝑇𝑇𝑇𝑇room4

�𝑇𝑇𝑇𝑇room + ∆𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,N�
4 − 𝑇𝑇𝑇𝑇room4

�
∆𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
∆𝑡𝑡𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,N

�
𝑛𝑛𝑛𝑛

(4)

2.1.1 Calibration of radiator model parameters

The model parameters were calibrated based on measurement data from experiments where the radiator was 

excited by controlling the flow rate according to four experiments as specified in Table 1. The temperatures of 

inlet, outlet and room air were, in all experiments, measured at a sampling rate of 15 seconds along with nine

surface temperatures (see Fig. 1). Three experiments were conducted using pseudo-random multi-level signals 

(PRMS) generated by the software Galois [21], and one experiment was conducted using a pseudo-random 

binary signal (PRBS) generated using the MATLAB function idinput. The use of both PRBS and PRMS signals 

was to test the prevailing notion in literature that a PRBS signal may not provide sufficient perturbation to 

identify nonlinear models [22]. The duration of the experiments is denoted P, and the number of levels was

the number of different flowrates, ranging from a fully closed to a fully open valve position. The switching 

time, i.e. the shortest amount of time between changing flowrates, was set to 300 seconds for all four 

experiments.

Table 1. Parameters defining the four experiments

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Training data Training data Training data Validation data

Excitation signal PRMS PRMS PRBS PRMS
Number of levels 5 13 2 5
Duration (P) 14 hours 14 hours 14 hours 50 hours

The radiator model in Eq. (2) contains five unknown parameters. However, the model structure only allows

for calibration of two parameters due to issues regarding structural identifiability [17]. To reduce the number 

of unknown parameters, the parameters describing the properties of water, cp,w and ρw, were assumed to be 

temperature invariant. This assumption seems reasonable as the temperature fluctuations between 30°C-60°C,

only leads to approximately 0.2% and 1.5% variation of cp,w and ρw, respectively. For convenience, the material 

property Hw is introduced according to Eq. (5).

𝐻𝐻𝐻𝐻w = 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝,w ∙ 𝜌𝜌𝜌𝜌w (5)

Fixing the material properties of the hydronic fluid leaves three unknown parameters: the nominal power at 

standard conditions, the thermal capacity of the radiator and the radiator exponent. The radiator exponent n

was estimated using the standard static least-squares calibration method [23] based on measurements of the 

nominal power at three standard temperature conditions as stated in Table 2 [16]. The two remaining 

parameters, i.e. the nominal power and the thermal capacity, were calibrated with the objective to minimize 
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the outlet temperature residuals using the time-series measurements obtained during the experiments.

Furthermore, the radiator models were calibrated for {𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 ∈ ℤ | 2 ≤ 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠 ≤ 100} to identify the optimal Ns.

Table 2. Specifications from data sheet

tinlet toutlet troom ɸN ∆tar,N

75 °C 65 °C 20 °C 2479 W 50.0 °C
70 °C 55 °C 20 °C 2001 W 42.5 °C
55 °C 45 °C 20 °C 1264 W 30.0 °C

The first three experiments were used as separate training data sets for calibrating three versions of the radiator 

model, and data from the fourth experiment was used to validate the calibrated models. Measurements from 

experiment 4, i.e. the validation data, are depicted in Fig. 3. It is seen that the room air temperature had an 

increasing trend during the experiment by a couple of degrees because of the high amount of heat injected into 

the room. The calibrated models were evaluated in terms of the two standard metrics root mean square error 

(RMSE) and normalized root mean square error (NRMSE) as defined in Eq. (6) and (7), respectively. P is the 

duration of the experiment where the index τs = {1, 2,..., P} denotes the time in 15 seconds increments, z and 

ẑ are timeseries of the measured data and the output of the model, respectively, and ‖∙‖ denotes the Euclidean 

norm. Considering both metrics in the evaluation ensures reliable evaluation when using three distinct 

experiments with varying variability to calibrate the models.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅   = �∑ (𝑧𝑧𝑧𝑧τs − �̂�𝑧𝑧𝑧τs)2𝑃𝑃𝑃𝑃
τs=1

𝑃𝑃𝑃𝑃
(6)

𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1 −
‖𝑧𝑧𝑧𝑧 − �̂�𝑧𝑧𝑧‖

‖𝑧𝑧𝑧𝑧 − mean(𝑧𝑧𝑧𝑧)‖� ∙ 100 (7)
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Fig. 3. Data from experiment 4 used for model validation

2.2 Model predictive control

MPC is an optimization based control scheme that, in each discrete time step τMPC, determines an optimal 

control sequence for a finite prediction horizon N. The controllable decision variables u, i.e. space heating 

control actions, are communicated to the EP representation of the building in a receding horizon approach, 

where only the first action of the optimal sequence is actually implemented [24]. At the next discrete time step, 

the optimization problem is solved again with a prediction horizon shifted one time step ahead in time. In this 

study, a linear objective function was considered for the MPC scheme using a time varying cost signal f, as 

specified in Eq. (8).

minimize
𝒖𝒖𝒖𝒖

  𝐽𝐽𝐽𝐽 = �𝑓𝑓𝑓𝑓𝜏𝜏𝜏𝜏 ∙ 𝑢𝑢𝑢𝑢𝜏𝜏𝜏𝜏

𝑁𝑁𝑁𝑁−1

𝜏𝜏𝜏𝜏=0

(8)

The MPC scheme is subject to multiple constraints (Eq. (9) – (12)). Firstly, the scheme is constrained by a 

control-model which describes the thermodynamics of the system to be controlled. The dynamics are specified 

in Eq. (9), and are a function of the system states xτ, control action uτ and disturbances dτ (i.e. ambient 

temperature and transmitted solar irradiance).

𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏+1 = g(𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏,𝑢𝑢𝑢𝑢𝜏𝜏𝜏𝜏,𝒅𝒅𝒅𝒅𝜏𝜏𝜏𝜏) (9)
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At each time step τMPC, the room air temperature was measured from the EP representation (ymeasured) and used 

to correct the states of the control-model using a Kalman filter that updates the observed and unobserved states 

according to Eq. (10), where KG is the Kalman gain [25].

𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏|𝜏𝜏𝜏𝜏 = 𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏|𝜏𝜏𝜏𝜏−1 + 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ∙ �𝑦𝑦𝑦𝑦𝜏𝜏𝜏𝜏measured − 𝐂𝐂𝐂𝐂 ∙ 𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏|𝜏𝜏𝜏𝜏−1� (10)

Addressing thermal comfort when applying MPC schemes can be handled in various ways [26]. One approach 

is to formulate a multi-objective optimization problem, which simultaneously minimizes operational costs and 

thermal comfort deviations [11, 27]. Another approach is to assume that occupants are comfortable as long as 

the room air temperature is within a predefined comfort band [7, 8]. In this study, the latter approach was 

chosen, which led to a single objective formulation. The comfort band was defined by the time invariant lower 

(tmin) and upper (tmax) comfort bounds, see Eq. (11).

𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛 ≤ 𝑦𝑦𝑦𝑦𝜏𝜏𝜏𝜏 ≤ 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 (11)

Furthermore, the space heating control action uτ was restricted by the maximum design heating power 

according to Eq. (12).

0 ≤ 𝑢𝑢𝑢𝑢𝜏𝜏𝜏𝜏 ≤ 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 (12)

2.2.1 Investigated MPC setups

In theory, the control-model of the room and heating system dynamics specified in Eq. (9) is a nonlinear 

function. However, many studies approximate the room thermodynamics as a linear function by neglecting the 

nonlinear dynamics of hydraulic systems, and assume electrical baseboard heaters in the simulations, thus

resulting in a convex linear program, see e.g. [7, 8]. To investigate how this approximation affects the control 

performance, simulations of three MPC setups were carried out:

a) Linear MPC controlling an electrical baseboard heater2.

b) Two-level control where a linear MPC determined the optimal heating setpoint to be maintained by a

conventional PI-controller3 adjusting the water flow to the hydronic radiator model.

c) N-MPC scheme, i.e. including the hydronic radiator in the control-model.

The three setups led to distinct co-simulation setups as illustrated in Fig. 4, facilitated by the Building Controls 

Virtual Test Bed [15].

2 A constant radiative fraction βR of 0.3 was assumed.
3 The PI controller was tuned using the MATLAB function pidtune.
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Fig. 4. Co-simulation setups for the three investigated MPC setups.

Setups a) and b) relied on a linear two-state grey-box control-model representing the lumped thermal capacity 

of the zone air and the construction elements. The state space representation of the model is given in Eq. (13)

and (14) with state matrix A, input matrix B, disturbance matrix E and output matrix C. The control-model was 

estimated in continuous time and then discretized using the zero-order hold method with a time step of 60 

seconds.

𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏+1 = 𝐀𝐀𝐀𝐀 ∙ 𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏 + 𝐁𝐁𝐁𝐁 ∙ 𝑢𝑢𝑢𝑢𝜏𝜏𝜏𝜏 + 𝐄𝐄𝐄𝐄 ∙ 𝒅𝒅𝒅𝒅𝜏𝜏𝜏𝜏 (13)

𝑦𝑦𝑦𝑦𝜏𝜏𝜏𝜏    . = 𝐂𝐂𝐂𝐂 ∙ 𝒙𝒙𝒙𝒙𝜏𝜏𝜏𝜏 (14)

The commercial solver CPLEX was used to solve the convex linear program and returned the optimal sequence 

of control actions u [W], constrained by the maximum installed heating power, i.e. umax = ɸmax (Eq. (12)). In 

setup b) the predicted temperatures, resulting from applying the optimal sequence u, were communicated as a

setpoint to the low-level PI-controller which then adjusted the flow rate of the hydronic radiator accordingly

(hence the name two-level control).

For setup c) the control-model combined the linear room model (Eq. (13) and (14)) with the model of the 

hydronic radiators (Eq. (2) and Appendix A) leading to a nonlinear control-model and a nonconvex 

optimization formulation. Instead of linearizing and discretizing the control-model, the MATLAB functions 

ode45 and fmincon were used to simulate and optimize the model, respectively. The controllable decision 

variable was the sequence of flow rates q which was constrained by the maximum flow rate, i.e. umax = qmax 

(Eq. (12)). The ode45 function simulated the system of ordinary differential equations using the fourth and 

fifth order Runge Kutta to determine an adequate time step size, thus ensuring a reliable simulation. The 

function fmincon contains several optimization algorithms of which the active set algorithm was used for the 

purposes of this study since it has been demonstrated to be able to achieve adequate results in a timely manner 

[14]. However, we found that the solver algorithm was sensitive towards the initial sequence of control actions.

Especially in cases where the initial sequence of flowrates would lead to comfort violations, the algorithm 

tended to arrive at locally optimal solutions. The optimization problem in this study was therefore solved using 
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two initial guesses, and the resulting solution with the lowest objective value was implemented. The first initial 

guess was determined by taking the solution obtained when neglecting the hydronic system and translating it 

into flowrates using Eq. (3). The second initial guess vector was a constant flow rate which was determined so 

the room air temperature was within the comfort bounds during the entire prediction horizon. After determining 

the optimal flow rates q, the resulting radiant and convective emitted heating power were calculated using Eq.

(3) and (4).

2.3 Test case

The three MPC setups were tested on an EP model representing an apartment located in Aarhus, Denmark. 

The apartment has east-west oriented windows and a west-oriented open balcony illustrated with yellow in

Fig. 5. The horizontal zone boundaries (i.e. ceiling and floor) were assumed adiabatic. Insulation was added 

to the partitioning wall to make it reasonable to neglect heat transfer to the adjacent apartment as suggested in 

[28], and the temperature in the adjacent apartment was kept constant at 20°C. Previous studies have suggested 

that the DR potential depends on the energy efficiency of the building envelope [7]. Therefore, the simulations 

were performed for the existing building and a building with an improved energy efficiency. Further 

specifications of materials and constructions are provided in ref. [7] where the building configurations used in 

this study are denoted Retrofit0 and Retrofit8.

Fig. 5. Test case geometry as modeled in EP.

The EP model had a time step of 60 seconds, whereas the MPC scheme determined new control actions every 

15 minutes (τMPC of 900 seconds). On-site weather measurements (see Fig. 6) were used during the one week

simulation period from December 12, 2016, to December 18, 2016.
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Fig. 6. Weather conditions during the simulation period

As stated in Eq. (11), the MPC scheme was constrained to maintain a room air temperature within certain

comfort bounds. The potential of exploiting the thermal mass as a sensible heat storage depends on the comfort 

interval, i.e. how large temperature fluctuations occupants will allow. In this study, a rather restrictive comfort 

interval was chosen with comfort bounds tmin and tmax set to 20°C and 23°C, respectively. The apartment was 

assumed to be equipped with two radiators which, as described in section 2.2.1, constrained the linear MPC 

and N-MPC scheme by the radiator characteristics of ɸmax = 2025W and qmax = 110 l/h, respectively. 

The potential of DR can be evaluated with respect to various objectives [5, 7, 8]. This study considers price-

based demand response, where the objective was to achieve operational cost savings compared to a reference

scenario with a control scheme tracking a constant setpoint tmin. Historical day-ahead wholesale electricity

prices for the bidding area DK1 were used as cost signal f (see Eq. (8)) in all control setups. The efficiency 

factor in the conversion of electricity to thermal energy in setups that include a hydronic heating system, i.e. 

setups b) and c), was assumed to be equal to one. This allowed for a direct performance comparison of the 

three MPC setups, as well as comparisons with results obtained in previous studies. In practice, however, a 

heat pump would significantly improve the economic performance of setups b) and c). Taxation tariffs are very 

country specific and were therefore neglected to generalize the interpretation of the results. Consequently, the

resulting operational costs cannot be expected to match the actual operational costs paid by consumers.

Furthermore, perfect predictions of f were assumed. A prediction horizon N=48 hours was chosen to ensure 

that the control scheme utilized the full storage capacity of the thermal mass.
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Three key performance indicators were used to evaluate the DR potential. One indicator was the ability of the 

MPC schemes to achieve operational cost savings relative to a reference controller according to Eq. (15), where 

cτ denotes the operational cost for time step τ.

∆𝑐𝑐𝑐𝑐��� =  �
𝑐𝑐𝑐𝑐𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀 − 𝑐𝑐𝑐𝑐𝜏𝜏𝜏𝜏

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑐𝑐𝑐𝑐𝜏𝜏𝜏𝜏𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀

𝑃𝑃𝑃𝑃

𝜏𝜏𝜏𝜏=1

 (15)

The other indicator was the absolute and relative ability of the MPC schemes to shift space heating 

consumption in each time step compared to a reference controller according to Eq. (16) and (17), respectively.

∆ɸ𝜏𝜏𝜏𝜏 =  ɸ𝜏𝜏𝜏𝜏 − ɸ𝜏𝜏𝜏𝜏
𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟           ∀𝑑𝑑𝑑𝑑 = 1, … ,𝑃𝑃𝑃𝑃 (16)

∆ɸ𝜏𝜏𝜏𝜏����� =  
ɸ𝜏𝜏𝜏𝜏 − ɸ𝜏𝜏𝜏𝜏

𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

ɸ𝜏𝜏𝜏𝜏
𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟           ∀𝑑𝑑𝑑𝑑 = 1, … ,𝑃𝑃𝑃𝑃 (17)

Furthermore, the shifting efficiency, which is the ratio between decreased and increased heating consumption 

during charging and discharging periods, was evaluated according to Eq. (18) [9]. The durations of charging 

and discharging periods is denoted τcharge and τdischarge and is determined at each load shift event (see Fig. 12).

𝜂𝜂𝜂𝜂𝑠𝑠𝑠𝑠ℎ𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  
−∫ ∆ɸ𝜏𝜏𝜏𝜏(∆ɸ𝜏𝜏𝜏𝜏𝑠𝑠𝑠𝑠 < 0)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

0

∫ ∆ɸ𝜏𝜏𝜏𝜏(∆ɸ𝜏𝜏𝜏𝜏 > 0)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜏𝜏𝜏𝜏𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

0

 (18)

3 Results

3.1 Dynamic radiator model

Three dynamic radiator models were calibrated based on the three separate training datasets (see Table 1) and 

with an increasing number of horizontal sections. Fig. 7 displays the performance indicators RMSE and 

NRMSE for the identified models evaluated on the validation data. The results suggest that the models derived 

using data generated from PRBS excitation signals (experiment 3) were less capable of accurately predicting 

the outlet temperature of the radiator compared to models derived using data generated from PRMS excitation 

signals (experiment 1 and 2). This is in agreement with the prevailing notion in literature that PRBS signals 

are suitable for linear systems, whereas calibration of nonlinear systems benefits from the use of PRMS

excitation signals, as they are better at revealing the behavior of dynamic systems [22]. The models calibrated

using Experiment 1 and 2 data achieved similar performance. Generally, the performance increases as the 

number of sections approaches six; hereafter the performance stagnates. 
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Fig. 7. RMSE and NRMSE values on validation data for radiator models calibrated based on the three distinct 

experiments with varying number of sections NS.

The best performing radiator model was achieved using Experiment 1 as training data and with nine horizontal 

sections (RMSE = 0.64°C and NRMSE = 84% on the validation data). This model was therefore chosen for 

the following investigations of the MPC schemes. The model parameters are stated in Table 3. It can be seen 

that the calibrated nominal power ɸN of 1874 W (using ∆tar,N = 42.5 °C) is consistent with the declared ɸN of 

2001W from the manufacturer (second row of Table 2) with a deviation of approx. 6%.

Table 3. Calibrated and calculated model parameters of the proposed dynamic radiator model.

Ns CRad

[J/K]
Hw

[kJ/(m3·K)]
ɸN

[W]
∆tar,N

[°C]
n

9 43254.3 4113.7 1873.7 42.5 1.32

Fig. 8 shows a comparison of the measured surface temperatures during the experiment used for model 

validation (Experiment 4) and the simulated states of the horizontal sections in the model using the parameters 

in Table 3. The measured surface temperatures (see Fig. 1 for their placements) were averaged horizontally 

and compared with the simulated temperatures of sections two, five and eight. Fig. 8 left column shows the 

temperature during 12 hours of the experiment, and Fig. 8 right column shows the histogram of residuals during

the entire experiment (50 hours). The temperature deviations increased slightly from the bottom section

towards the top section, where the RMSE for the four sections was 3.55°C, 1.77°C, 0.95°C and 0.64°C, 

respectively. As expected, the residuals of the outlet temperature were the lowest since the model was 

calibrated with the objective of minimizing the outlet residuals. Another reason for this vertical increment is

the model structure, where the heat loss for each horizontal section is a function of the room air temperature. 
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However, the temperature of the ambient air surrounding the radiator increases vertically, thus the model 

structure overestimates the heat loss especially in the top sections.

Fig. 8. Simulated system states compared to surface temperature measurements.

3.2 Performance of MPC schemes

The indoor air temperatures for the existing building in the simulated one-week period, using the constant 

setpoint tracking controller (reference) and the three MPC setups, respectively, are depicted in Fig. 9. The grey 

dashed lines indicate the thermal comfort bounds, and the bottom chart displays the historical time varying 

wholesale electricity prices. Compared to the reference controller, all the E-MPC schemes increased the space 

heating consumption and, consequently, increased the air temperatures in low price periods. Consequently, the 
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thermal mass of the building constructions was charged and the heating consumption in the following high 

price periods was reduced. Overall, the trajectories depicted in Fig. 9 suggest that the three MPC setups resulted 

in similar space heating strategies.

Fig. 9. One-week simulation results and associated cost signal.

It is noted that the simulations were only performed for a period of one week and for one specific apartment, 

which is why the specific absolute results cannot be used for generalizations on the effect of the MPC schemes.

However, the observed tendencies are considered generalizable as they are consistent with previously obtained 

results investigating the performance of E-MPC [7, 8, 11].

The summarized results for the simulation week is presented in Table 4 and confirm that the three MPC setups

achieved similar performance. Evaluation of the ability to achieve operational cost savings (Eq. (15)) showed 
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that the three MPC setups achieved operational cost savings of approx. 5% and 18% for the existing and 

retrofitted building, respectively. Furthermore, the ability to maintain an air temperature within the comfort 

bounds was evaluated as the number of degree hours where the air temperature violated the lower and upper 

temperature bounds. The performance was similar for all MPC setups, and the level of comfort violations was

generally limited – a fact also indicated by Fig. 9. The reason for the minor comfort violations in setups a) and 

c), which solely relied on the control-model to predict the required space heating consumption, was the 

practically unavoidable building/control-model mismatch. In setup b), which relied on a low-level PI controller 

to track the setpoints specified by the MPC scheme, minor temperature over- and undershoots were observed 

when the low-level PI controller was switching between the upper and lower comfort bounds as setpoints. 

Table 4. Summarized simulation results.

Energy Operational 
cost 

Cost savings Comfort 
violations

Existing
building

Reference 4.1 kWh/m2 € 12.0 0.4 °Ch
Scenario a) 4.3 kWh/m2 € 11.3 € 0.7 (5.8%) 3.2 °Ch
Scenario b) 4.3 kWh/m2 € 11.3 € 0.7 (5.8%) 3.7 °Ch
Scenario c) 4.4 kWh/m2 € 11.4 € 0.6 (5.0%) 2.1 °Ch

Retrofitted
building

Reference 1.4 kWh/m2 €   3.9 0.1 °Ch
Scenario a) 1.5 kWh/m2 €   3.2 € 0.7 (18.0%) 2.3 °Ch
Scenario b) 1.5 kWh/m2 €   3.2 € 0.7 (18.0%) 2.6 °Ch
Scenario c) 1.5 kWh/m2 €   3.2 € 0.7 (18.0%) 1.6 °Ch

The relative ability of the MPC setups to shift space heating consumption by exploiting the thermal mass as 

heat storage (Eq. (17)) is depicted in Fig. 10 and Fig. 11 for the existing and retrofitted building, respectively.

A positive difference indicates a boosting period, where the room air temperature was increased to store heat, 

whereas a negative difference occurs at high price periods, where the heat storage was discharged. A negative 

difference of -100% indicates a period where the space heating was completely shut off. In general, the three 

MPC setups led to similar charging and discharging patterns. 
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Fig. 10. Potential for exploiting the thermal mass as heat storage for the existing building.

The relative shifting potential was highest in the retrofitted building because of the lower reference heating 

consumption. The periods of complete heating shut-off were very limited in the existing building, whereas a

total shut-off was possible for extended periods in the retrofitted building. Furthermore, Fig. 10 and Fig. 11

show that the temperature boosts resulted in space heating increases of up to approx. 100% and 300% compared 

to the reference controller for the existing and retrofitted building, respectively. For this to be possible,

radiators have to be over-dimensioned when installed, which is typically the case in many existing Danish 

residential buildings in order to ensure fast response times and sufficient heating power given the worst-case 

weather conditions [29].
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Fig. 11. Potential for exploiting the thermal mass as heat storage for the retrofitted building.

Fig. 12 displays the absolute shifting potential according to Eq. (16) for the existing and retrofitted building,

respectively, using MPC setup b). The simulation period was divided into six load shift events consisting of a 

charging and discharging period (see Eq. (18)). Overall, the existing building enabled the highest shifted 

consumption due to the generally higher reference consumption, whereas the retrofitted building enabled shifts 

over longer periods because of the increased storage efficiency. Information on the absolute charge and 

discharged heat in individual events is specified in Table 5 together with the shifting efficiency. In contrast to 

previous studies that used rule-based control to investigate the heat storage efficiency of thermal mass [9, 30],

the charging and discharging periods in this study varied in duration since the control was optimized based on 

the cost signal f.

Table 5. Specification of load shifting events.
Charging Discharging ηshifting

Existing
building

Event 1 108.1 Wh/m2 -65.4 Wh/m2 60.6%
Event 2 86.8 Wh/m2 -52.9 Wh/m2 61.0%
Event 3 102.8 Wh/m2 -74.3 Wh/m2 72.4%
Event 4 79.7 Wh/m2 -57.6 Wh/m2 72.3%
Event 5 88.5 Wh/m2 -62.5 Wh/m2 70.6%
Event 6 79.4 Wh/m2 -60.0 Wh/m2 75.5%

Retrofitted
building

Event 1 89.0 Wh/m2 -57.9 Wh/m2 65.1%
Event 2 68.5 Wh/m2 -53.3 Wh/m2 77.9%
Event 3 81.4 Wh/m2 -69.3 Wh/m2 85.1%
Event 4 70.1 Wh/m2 -56.6 Wh/m2 80.7%
Event 5 71.7 Wh/m2 -57.7 Wh/m2 80.5%
Event 6 69.3 Wh/m2 -70.4 Wh/m2 101.5%
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As expected, the quantity of shifted consumption was slightly higher for the existing building; however, the 

shifting efficiency was significantly higher for the retrofitted building. The efficiency of Event 6 was even 

above 100% since heat stored at previous events was not yet fully discharged coming into the event. This

mechanism can also be observed in Fig. 11 where the relative consumption at the end of the fifth discharging 

period was still below zero before charging period six was initiated. The observed shifted quantities and 

efficiencies are consistent with the results in [9].

Fig. 12. Absolute shifting potential for the existing and retrofitted building using MPC setup b).

4 Discussion

The results of this study showed very limited differences in performance between setups a) and b). This 

suggests that findings from previous studies using electrical baseboard heaters as in setup a), e.g. [7, 8], also 

apply to buildings equipped with hydronic heating systems. Besides enabling a more broad generalization of 

previous research results, this equivalency also has a practical advantage. The simulation time for setup c)

significantly increased compared to setups a) and b) with a factor of up to 50. Based on the findings of this 

study, it therefore seems practically reasonable that future simulation-based studies as well as real application 

of E-MPC for single-zone residential space heating rely on setup b). However, it may be necessary to include 

the dynamics of the radiator when operating multi-zone hydronic space heating systems or to investigate the 

dynamic response of the heating system.
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Furthermore, in agreement with previous studies [7, 8, 9], the results suggest that the potential for shifting

space heating consumption depends on the energy efficiency of the building envelope. The absolute potential 

for shifting energy on the short term was greater in the existing building because of the higher reference 

consumption, whereas the higher storage efficiency of the retrofitted building made it more suited for shifting 

loads over longer periods. Similarly, the retrofitted building allowed space heating to be completely shut off

for multiple consecutive hours, while the existing building was incapable of sustaining comfortable 

temperatures without space heating. Despite these differences, the absolute loads shifted during the load 

shifting events were similar.

5 Conclusion

This paper reported on the development of a reliable dynamic hydronic radiator model and an investigation of 

the effect of including the radiator dynamics in an associated MPC scheme for residential space heating with 

the objective to perform price-based demand response. Three MPC setups were defined: a) a linear MPC 

controlling an electrical baseboard heater, b) a two-level controller where a linear MPC calculated the heating 

setpoint for conventional PI-control of the hydronic radiator model, and c) an N-MPC scheme that included

the hydronic radiator in the control-model. The three MPC setups obtained similar simulation results, i.e. 

operational cost savings of approx. 5% and 18% in an existing and retrofitted building, respectively, while 

restricting the amount of thermal comfort violations to a limited extent. This suggest that the more practical 

two-level MPC implementation is preferable for real applications compared to the significantly more 

computational demanding N-MPC scheme for real applications.

The calibrated dynamic radiator model developed for this study was able to adequately simulate the behavior 

of the actual radiator when comparing measured experiment data with the states of the proposed dynamic

model. As such, this paper also provides a reliable radiator model suitable for any simulation-based research 

study in which accurate representation of the dynamic behavior of hydronic radiators is desirable.
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Appendix A

The complete system of non-linear ordinary differential equations of the hydronic radiator model.

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡inlet − 𝑡𝑡𝑡𝑡1) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.1)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡1 − 𝑡𝑡𝑡𝑡2) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.2)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡3
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡2 − 𝑡𝑡𝑡𝑡3) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡3 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.3)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡4
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡3 − 𝑡𝑡𝑡𝑡4) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡4 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.4)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡5
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡4 − 𝑡𝑡𝑡𝑡5) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡5 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.5)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡6
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡5 − 𝑡𝑡𝑡𝑡6) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡6 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.6)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡7
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡6 − 𝑡𝑡𝑡𝑡7) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡7 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.7)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡8
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡7 − 𝑡𝑡𝑡𝑡8) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡8 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.8)

𝐶𝐶𝐶𝐶Rad ∙
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡9
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝐻𝐻𝐻𝐻w ∙ 𝑞𝑞𝑞𝑞 ∙ (𝑡𝑡𝑡𝑡8 − 𝑡𝑡𝑡𝑡9) ∙ 𝑁𝑁𝑁𝑁S − ɸN ∙ �
𝑡𝑡𝑡𝑡9 − 𝑡𝑡𝑡𝑡room
∆𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,N

�
𝑛𝑛𝑛𝑛

(A.9)

𝑡𝑡𝑡𝑡outlet = 𝑡𝑡𝑡𝑡9 (A.10)
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1. Generel beskrivelse af teknologien

I projektet READY.DK udvikles der en metodik der detaljeret kan kortlægge smart grid potentia-
let for den enkelte bygning i forbindelse med en energirenovering. Metodikken faciliteres af et 
EDB-program. Dette program vil indgå i et større kompleks af programmer, der udvikles i for-
bindelse med det internationale EU-FP7 projekt ”READY”, der arbejder med energirenoverings-
potentialer på bydelsniveau. READY.DK vil dermed bidrage med et vigtigt input til en platform 
der skal balancere det privat-, og socio-økonomiske trade-off mellem investeringer i energibe-
sparelse, investeringer i teknologi der kan høste ”Smart Grid Potentiale”, og energiproduktion.

2. Projektbeskrivelse

a. Projektets formål

Indeværende projekt ”READY.DK” er et ”ad-on” projekt til det 33,5 mio. € store internationale 
EU-FP7 projekt ”READY”. Original FP 7 ansøgning vedlagt, og både indhold og økonomi er god-
kendt af EU. READY forventes at starte ultimo 2014.

READY er primært et demonstrationsprojekt, men Aarhus Universitet (AU) har ansvar for nogle 
få forskningsaktiviteter indarbejdet i projektet. Et af områderne er arbejdspakke 3.5.1: Opimi-
zation of building retrofit, og her ønsker vi med denne ansøgning at udvide omfanget af forsk-
ningsområdet, resultaterne og formidlingen af smart grid-integrerede løsninger i forbindelse 
med bygningsrenovering. Omfangsmæssigt ønsker vi at udbygge forskningsområdet med tre 
årsværk svarende til en fuldtids Ph.d. studerende på Aarhus Universitet, Institut for Ingeniørvi-
denskab.

Vedlagt forefindes et ”2 siders” dansk resume af FP 7 READY-projektet samt original og god-
kendt FP 7 ansøgning.

I resten af denne ansøgning vil vi koncentrere os om at forklare den ønskede udbygning af ar-
bejdspakken 3.5.1 i EU FP 7 READY projektet. Overordnet set ønsker vi at skærpe smart grid 
elementet i FP7 ansøgningen, som primært er et energirenoverings-demonstrationsprojekt for 
boligbyggeri med fokus på energibesparelser. I FP7 projektet behandles smart grid potentialet 
af eksisterende byggeri på ”makroskala”. I READY.DK vil vi bevæge os ned på ”mikroskala” og
skærpe fokus på hvorledes man kan integrere konkrete løsninger, der fremmer eksisterende 
bygningers ”Smart Grid Potentiale” i forbindelse med en energirenovering. Dermed får vi mere 
viden om hvor det privat-, og socio-økonomiske trade-off mellem investeringer i energibespa-
relser og investeringer i teknologi der kan høste ”Smart Grid Potentiale” ligger. Målet er at bi-
drage med forskningsbaseret viden til at skabe en metodik der med udgangspunkt i det enkelte 
byggeris potentiale for energibesparelser og smart grid fleksibilitet kan bruges til projektering af 
en totalløsning i forbindelse med renovering af boliger.

b. Beskrivelse af projektets indhold

Der gives i det efterfølgende en kort opsummering af delopgaven 5.3.1 i READY der omhandler 
optimering af energirenoveringer: Investeringer i energirenovering af boliger nedbringer energi-
efterspørgslen gennem et reduceret forbrug. Bygningers masse, lokal lagring og intelligente 
apparater kan øge forbrugernes fleksibilitet og lette integrationen af vedvarende energi til op-
varmning og elforsyning. Med udgangspunkt i energirenoveringsdelen i demonstrationsprojektet
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READY samt resultaterne af underopgave 2.1, (selve energirenoveringen) har denne delopgave 
til formål at etablere en generel platform for i grove tal at kvantificere de operationelle krav til
energipriser og ”demand-side” fleksibilitet af typiske bygninger i et større område. Der er fokus 
på koste optimale løsninger, der minimerer levetids energiforbruget (dvs. omfatter indeholdt 
energi fra produktion m.v.), og sikre størst mulig demand-side fleksibilitet og garanterer en høj 
kvalitet af indendørs klima og miljø forhold til slutbrugeren.

Indholdet af projektet READY.DK vil være at generere viden og data om konkrete smart grid 
løsninger der kan indarbejdes i danske energirenoveringer. Dermed vil man flytte sig fra de 
”grove” betragtninger af potentialer i READY (byniveau) til mere konkret/lokale vurderinger af 
potentialer (bygningsniveau). Det er vigtigt for den enkelte bygningsejer samt energisystemet
at kunne kvantificere smart grid potentialet i den konkrete bygning rimeligt præcist for at kunne 
foretage rentable investeringer og opstille de rette betingelser i forbindelse med en demand 
respose handel.

READY.DK vil gennemføre analyser og eksperimenter der kortlægger smart grid potentialet for 
en række af de enkelte bygninger der indgår i energirenoveringsprojektet FP7 før energirenove-
ringerne. Dernæst foretages analytiske beregninger af løsninger der teoretisk set maksimerer 
bygningernes smart grid potentiale i forbindelse med en energirenovering. Disse løsninger ind-
arbejdes i energirenoveringsprojekterne, og disse testes eksperimentelt i perioden efter energi-
renoveringen. Erfaringerne fra projektet vil blive brugt til at opstille en metodik der kan bruges 
til at identificere og kvantificere effekten af fleksibilitetsteknologier i forbindelse med energire-
novering.

c. Beskrivelse af arbejdspakker

Arbejdspakke og -
nummer 

AP1 – Projektledelse 

Resourcer Tidsforbrug: 500 timer
 
Formål
Denne AP har til formål at sikre en effektiv forvaltning af aktiviteterne i projektet, herunder 
især koordinering med aktiviteterne i READY projektet. Projektledelsen skal også sikre en høj 
kvalitet af forskningsarbejdet og de rapporter og publikationer der produceres. Arbejdspak-
ken tager sig af den administrative og finansielle forvaltning af projektet, herunder overvåg-
ning og rapportering af status til Energinet.dk; risikostyring; tilrettelæggelse af projektmø-
der; og kvalitetssikring. 

Arbejdspakke og -
nummer 

AP2 – Smart grid potentiale i energirenoveringer 

Resourcer Tidsforbrug: 5771 timer
 
Formål
Denne AP genererer viden og data om konkrete smart grid løsninger der kan indarbejdes i 
danske energirenoveringer gennem demonstrationsprojektet EU-FP7 READY. Arbejdspakken 
beskæftiger sig dermed med konkrete bygninger og deres ejere – både analytisk og ekspe-
rimentelt. Formålet er at skabe en valideret metodik der kan benyttes til at kortlægge smart 
grid potentialet for den enkelte bygning og deres ejer(e) i forbindelse med en energirenove-
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ring. 
Opgavebeskrivelse

Opgave 2.1: Smart grid potentiale i eksisterende byggeri
Der udvælges en række bygninger som er repræsentativ for de bygninger der indgår i ener-
girenoveringerne i READY (en-familiehuse og etageboligbyggeri). Disse bygninger analyseres 
teoretisk for deres smart grid potentiale før de renoveres, og der udføres eksperimenter med 
bygningerne for at undersøge om de teoretiske potentialer kan indfries.
Milepæl: Smart grid potentiale for bygningerne identificeret (før energirenovering) – 0.-6. 
måned

Opgave 2.2: Identifikation og test af løsninger der øger bygningernes smart grid potentiale.
Viden om de eksisterende bygningers fra arbejdspakke 2.1 benyttes til at identificere løsnin-
ger der potentielt kan øge bygningernes fleksibilitet i forhold til et smart grid. Løsningerne 
indarbejdes i energirenoveringsprojekterne, og disse testes eksperimentelt i perioden efter
energirenoveringen. 
Milepæl: Løsninger der øger smart grid potentialet i forbindelse med en renovering identifice-
ret (før energirenovering) – 6.-12. måned
Milepæl: Eksperimentel test af smart grid løsninger i renoveringsprojekterne gennemført –
12.-24. måned

Opgave 2.3: Metodik
På baggrund med erfaringerne i opgave 2.1 og 2.2 opstilles en metodik der kan bruges til at 
identificere og kvantificere effekten af fleksibilitetsteknologier i forbindelse med energireno-
vering. Metodikken er operationaliseret i et EDB-program, der faciliterer opgaven. Program-
met giver et værdifuldt input til den overordnede renoveringsmodel i EU-FP7, der skal balan-
cere det privat-, og socio-økonomiske trade-off mellem investeringer i energibesparelse, 
investeringer i teknologi der kan høste ”Smart Grid Potentiale”, og energiproduktion.
Milepæl: Metodik færdig – 0.-36. måned

d. Risikovurdering

Der vurder ikke at være de store risici forbundet med projekt, da dette ”Ad On” projekt er en 
udbygning af et allerede godkendt EU FP 7 projekt. 

e. Miljøpåvirkninger

e.1 Miljøkonsekvenser og milepæle for miljøforbedringer
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Karakter af miljøpåvirkning Handling i projektet

(Slet ikke dette skema og uddyb efterføl-
gende)

Ikke 
relevant

En mindre (X) 
eller væsent-
lig (XX) på-
virkning

Positiv (+) 
eller negativ 
(-) påvirk-
ning

Håndteres
i projektet

En 
milepæl i
projektet

Eksempel på indtastning XX - X

På
vi

rk
ni

ng
er

 f
ra

 v
al

g 
af

 
m

at
er

ia
le

r

Brug af sjældne metaller og grundstoffer 
(f.eks. i magneter, katalysatorer, solceller)

x

Brug af byggematerialer (f.eks. stål, ce-
ment)

XX - X

Brug af miljøskadelige stoffer (f.eks. for-
maldehyd, PCB) samt andre forbrugsstoffer

X

Mulighed for at genbruge eller genvinde 
emner

X

På
vi

rk
ni

ng
er

 f
ra

 
pr

oc
es

se
r

Energiforbrug og udledning til luften (fra 
rejser og fra produktion, transport og drift 
af udstyr)

x + X

Særlige arbejdsmiljøforhold ved produktion 
og drift, herunder håndtering af kemikalier 
og risiko for ulykker

x

Lokalitetsspecifikke konsekvenser, herunder 
ulempe for folk i omegnen og påvirkning af 
natur (f.eks. støj, lugt, udledninger)

x

Produktion af restprodukter og affald, her-
under spildevand, samt behov for specialbe-
handling af affald

x

På
vi

rk
ni

ng
er

 i 
fo

rh
ol

d 
til

 
en

er
gi

sy
st

em
et

Ændring i virkningsgrad/effektivitet (både 
teknologi og system)

x +

Påvirkning af eksisterende infrastruktur 
(behov for ny/forstærkning eller redukti-
on/undgå)

x

Miljøkonsekvens af ændret fleksibilitet i 
forhold til brændselstyper 

X

Miljøkonsekvens af ændring i fleksibilitet i 
forhold til produkt (fx el/varme) 

XX + X

Bygninger med øget fleksibilitet i forhold til et smart grid kan kræve investeringer i ekstra byg-
gematerialer, men ikke nødvendigvis. Fleksibiliteten kan udnyttes til at minimere energiforbrug 
og udledning til luften hvis man ønsker dette som objektfunktion i styringen af systemet. Fleksi-
bilitet vil øge effektiviteten af energiforsyningen.

e.2 Bidrag til politiske mål for et mere miljøvenligt energisystem

(slet ikke denne tabel) Ikke 
relevant

Mindre 
bidrag

Væsentligt 
bidrag

Hele energiforsyningen dækkes af vedvarende energi i 2050. x

Elektricitet og varme dækkes af vedvarende energi i 2035. x

Udfasning af kul på kraftværker og udfasning af oliefyrede kedler i 2035. x

Integration af 50 pct. vindkraft i 2020. x

20 pct. reducering af CO2 udledning i 2020. x

20 pct. energivirkningsgrad i 2020. x
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3. Projektets relevans

Fremtidens elektriske system vil være væsentligt forskellig fra det elektriske systemet vi kender 
i dag. Store og markante ændringer er nødvendige, hvis den meget store mængde vedvarende 
energi, fra primært vindmøller og solceller, skal blive integreret og udnyttet optimalt. Der skal 
udvikles tekniske og økonomiske løsninger, der sikre en balance mellem produktion og forbrug 
mellem de mange forskellige energiforbrugende enheder og operatører i det samlede energisy-
stem.
I fremtidens elsystem, ”Smart Grid”, vil der være behov for en væsentligt større fleksibilitet hos 
elkunderne, og det betyder at samspillet mellem de forskellige energisystemer skal udnyttes i 
langt større grad end det gøres i dag samt at kunderne skal inddrages på en sådan måde, at de 
bliver et vigtigt og nyttigt ”aktiv” i balanceringen af el-systemet og effektiv udnyttelse af den 
fluktuerende el-produktion fra sol og vind.

Med dette ”Ad on” projekt vil vi sikre at overordnet energirenovering ikke modarbejder men 
bidrager positivt til et fleksibelt energisystem ved at indarbejde Smart Grid løsninger i arbejdet 
med energirenoveringer.

Generelt vil vi med dette projekt bidrager væsentligt til at nå Danmark’s og EU’s mål for ned-
bringelse af CO2 udledningen, udbygningen og implementeringen af vedvarende energi og ikke 
mindst understøtter strategierne inden for smart grid og smart energy.

4. Formidlingsplan og forankring
Resultaterne fra projektet vil have en betydelig indflydelse på den nuværende state-of-the-art 
ud fra både videnskabelige og teknologiske synspunkter.

Aarhus Universitet planlægger at formidle resultaterne af projektet gennem præsentationer i 
internationale videnskabelige konferencer og workshops, samt gennem videnskabelige publika-
tioner i dedikerede, internationale forskningstidsskrifter. Derudover udføres der minimum tre 
populærartikler i danske tidsskrifter, og projektets tema og resultater vil indgå i projektlederens 
blog.

READY.DK vil også udnytte den unikke mulighed for formidling og forankring af viden som pro-
jektet opnår gennem det integrerede samarbejde med EU-FP7 projektet READY.

5. Organisering og kompetencer for aktører

Projektet er organiseret som et ph.d. projekt ved Aarhus Universitet. Projektet forankres i forsker-
gruppen Indeklima og Energi, som bl.a. beskæftiger sig med bygningers rolle i fremtidens smart grid
(http://eng.au.dk/forskning/forskningsomraader/byggeri-og-bygningsdesign/indeklima-energi/)

Forskergruppen udfører forskningen i samarbejde med nationale og internationale samarbejdspartne-
re. Forskergruppen er også ansvarlig for den forskningsbaserede undervisning i civilingeniøruddannel-
sen i Integrated Energy Design.
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6. Finansiering og generelle kommentarer til budget

Der søges midler til en Ph.d. studerende under gældende regler for Ph.d. ansættelse, lønninger 
m.v.

7. Tilskyndelsesvirkning

Indeværende projekt READY.DK, et ad-on projekt til EU projektet READY, vil ikke bliver ført ud i 
livet, medmindre at der opnås støtte og dermed finansiering fra ForskEL af en hel ph.d. stude-
rende. Der er ikke muligt at allokere og flytte midler fra i READY projektet til en detaljeret,
forskningsbaseret udvikling af integrerede løsninger, der fremmer eksisterende bygningers 
”Smart Grid Potentiale” i forbindelse med en energirenovering, da READY primært er et demon-
strationsprojekt. Vi mener at området er af meget stor betydning for udviklingen af fremtids 
energisystemer og søger derfor ForskEL om finansiering af projektet READY.DK.  

8. Markedet

a. Målgruppe og merværdi for forbrugere

Boligforeninger, virksomheder og private boliger mf. der står foran en energirenovering. Vi skal 
sikre der bliver Smart Grid renoveret og ikke kun energirenoveret.

Aggregatorer (balance kraft m.v.) og el-handlere kan udvikle nye forretningskoncepter og for-
retningsmuligheder i krydsfeltet mellem regulerede aktiviteter og udvikling af det frie marked, 
når de får adgang til ”Smart Grid” potentialet i den store bygningsmasse.

Alle fremtidige el-kunder, der har et "ikke ubetydelig" elforbrug og ikke mindst et elforbrug, der 
kan reguleres ved prissignaler mv.

Fremtidige el-forbrugere og bygninger vil have optimale betingelser for at sikre den bedste 
"driftsøkonomi" af det samlede energiforbrug, da de er sikret billigere og renere elektricitet 
gennem deres omdannelse til at være "Smart Grid Ready", gennem deres Smart Grid renove-
ring.

Levandører af Smart Grid komponeter, systemer og serviceses m.v.

b. Konkurrenceanalyse

Ikke relevant for nuværende.

c. Markedspotentiale af "Smart Grid Ready"

Antallet af bygninger i Danmark der bør/skal energi/smart-grid renoveres fremover er meget 
stort. Der er tale om mere end 90.000 etageboliger og mere end 72.000 kontor-og erhvervs-
byggeri. Mange af disse bygninger er nødt til at gå igennem en "Smart Grid Ready" renovering 
og en energioptimerings renovering i løbet af de næste 10 til 20 år. Antages det, at kun 33 % af 
disse bygninger bliver "Smart Grid Ready" over en periode på 15 år, vil det give den potentielle 
af over 3.100 bygninger pr. år, og det er kun i Danmark. 
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Derudover vil der være mere end 1 mio. enfamiliehuse, der skal/bør energirenoveres og få
varmepumper installeret i de næste mange år. I 2030 forventes det, at omkring 300.000 indivi-
duelle varmepumper vil blive installeret i enfamilieshuse, og det alene i Danmark! Derfor er det 
vigtigt med en metodik til smart grid renovering.

d. Markedsføringsplan

Se under ”Formidlingsplan og forankring”.

9. Forskning

a. Forskningsindhold
Når vi har omstillet vores energiproduktion til vedvarende energi, er det ikke nødvendigvis 
økonomisk rentabelt at energirenovere i det omfang man hidtil har set i forskningsbasere-
de demonstrationsbyggerier (renovering). Der er en tendens til at energirenovere til ”0-
energi” niveau, endda ”aktiv-energi” niveau (enheder der over et år producerer mere 
energi end de bruger). Det er langt fra sikkert om dette er fornuftigt i alle renoveringspro-
jekter – på kort eller længere sigt.
Det forskningsmæssige indhold af dette projekt er at bidrage til en mere nuanceret tilgang 
til energirenovering, der bør inkludere balancen mellem investeringer i energibesparelser, 
energiforsyning og teknologier til smart grid fleksibilitet.

b. Forskningsbaseret bemanding

Sektion for Byggeri og Bygningsdesign
Sektion for Byggeri og Bygningsdesign under Institut for Ingeniørvidenskab på AU vil bidrage 
med viden og ekspertise i bygningsfysik og -installationer. Hovedinteressen i dette projekt er 
modellering af energiforholdene i bygninger, herunder verifikation på grundlag af empiriske data 
indsamlet i projektet med henblik på at gøre simulation-baserede forudsigelser om smart grid 
potentialer mere pålidelige.

Kontaktinformation på nøgleperson
Steffen Petersen, Ph.D
Adjunkt, Ph.D.
Leder af Indeklima og Energi

Aarhus University Department of Engineering, Aarhus University
Inge Lehmanns Gade 10, 8000 Aarhus C, Danmark
Email: stp@eng.au.dk
Phone: +45 4189 3347

Steffen Petersen er projektleder for READY.DK.

En egnet kandidat til Ph.d. studiet i READY.DK arbejdspakke 2 vil blive optaget på Graduate 
School at Science and Technology (Aarhus Universitet).

Institut for Ingeniørvidenskab, Smart Grid program
Smart Grid programmet på Institut for Ingeniørvidenskab vil støtte projektet i dag-til-dag ledel-
se, kommunikation, gennemførelse af aktiviteter og udvikling af initiativer og nye projekter.
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Kontaktinformation på nøgleperson
Peter Harling Lykke

Aarhus University Department of Engineering, Aarhus University
Finlandsgade 22, 8200 Aarhus N, Danmark
Email: ply@eng.au.dk
Phone: +45 4189 3325
Autoriseret underskriver

Thomas Skjødeberg Toftegaard, Institutleder

Kontaktinformation
Thomas Skjødebjerg Toftegaard, institutleder

Department of Engineering, Aarhus University
Finlandsgade 22, 8200, Aarhus N, Danmark
Email: tst@cs.au.dk
Phone (direct): +45 8715 6168
Phone (mobile): +45 2137 9470

c. Forskningsplan
Se beskrivelse af arbejdspakke 2 i afsnit 2c af denne ansøgning.
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10. CV’er Nøglepersoner

Curriculum Vitae – Steffen Petersen  (AU-ENG)

Born 3 April 1979, Danish.

Education:
2011 Ph.D., Department of Civil Engineering, Technical University of Den-

mark. Title: Simulation-based support for design of new low-energy 
office buildings.

2005 M.Sc. in engineering, Department of Civil Engineering, Technical Uni-
versity of Denmark.

Employment:
2013-present Assistant professor, Aarhus University Department of Engineering
2005-present Consultant engineer, ALECTIA A/S
2006-2011 PhD Student, Dept. Civil Engineering, Technical University of Denmark
2008 (March-
August)

Guest researcher at Lawrence Berkeley National Laboratory – Building 
Technology

2005-2006 Research assistant at Section of Building Physics and Services, Dept. 
Civil Engineering, Technical University of Denmark

Research areas:
Method and tools for simulation-based design support; predictive control of building systems 
operation; calculated vs. measured performance; smart grid potentials in building operation.

Keywords: Energy and buildings, Building physics, Indoor climate (thermal, air quality, day-
light), Building simulation, Integrated energy design (process).

Relevant publications:
Petersen S. and Bundgaard BW. The effect of weather forecast uncertainty on a predictive 
control concept for building systems operation. Applied Energy 116 (2014) 311–321

Petersen S. and Svendsen S. Method for component-based economical optimisation for use 
in design of new low-energy buildings. Renewable Energy 38 (1) (2012) 173-180

Petersen S. and Svendsen S. Method for simulating predictive control of building systems 
operation in the early stages of building design. Applied Energy 88 (2011) 4597–4606



Project application to ForskEL (in Danish)

131

                  

Curriculum Vitae – Peter Harling Lykke  (AU-ENG)

Born 17 June 1965, Danish.

Education and academic degrees
Project Manager, 2010
Euro Consultant. On year course in Aarhus. November 92 - August 93.
Introduction to the use of "European system", Including funds, subsidies, grants etc., supple-
mented with accounts and contacts and network development.

Bachelor of Engineering, Odense (completed in Copenhagen), August 87 - February 92.
Specializing in Energy and Environment. My thesis was in "Future energy supply". Solar thermal 
power plant based on SOFC - fuel cells.

Current and recent positions held:
2012 - Smart Grid Programme Manager Aarhus University School of Engineering, Aahus 
University, Denmark

2012 – 2010 Innovation Manager NRGi Net A/S 
2010 – 2004 Head of research and development NRGi Amba 
2004 – 2004 Head of department (Development) NRGi Construction A/S 
2004 – 1997 Head of department (Sale) NRGi Construction A/S 
1997 – 1995 Energy- and development ingineer NRGi Construction A/S (ARKE) 

Management experience:
More than 20 years of R&D management experience from the energy sector including manage-
ment of project management office. I have managed innovation and product development 
teams in national environment. The last five years with focus on rollout of smart meters and 
preparation for Smart Grids. 

Board of Directors:
2004 – 2012  Member of Board of Directors for Varmepumpefabrikantforeningen 
2004 – 2008  Member of Board of Directors for Electronic Housekeeper 
2008 – 2012  Member of Board of Directors  for Samsø Energiakademi

Expert records:
Member of the Council of Regions Midtjyllands "mega" investment in renewable energy by 2007 
Member of the Danish Energy's F & I Committee from 2007-2012
Member of Danish Electric Vehicle Alliance from 2010-2012
Member of DI Energy industry R & I Committee from 2008-2012
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