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Overview of project objectives and report structure 
The objectives of the present project are: 
• To explore and model the influence of buoyancy effects in the atmospheric boundary layer (i.e. 

atmospheric stability effects) on both wake losses and structural loading of wind turbines (WT’s) 
operating in wind farms; 

• To validate the developed model framework by comparing model predictions with full-scale wind 
farm (WF) measurements both regarding wake affected production losses and structural loading; 

• To demonstrate the capabilities of the developed model framework regarding design of innovative 
load alleviating wind turbine control systems for WT’s operating in wake affected flow conditions; 
and 

• To suggest simplified design procedures that includes atmospheric stability aspects. With the 
Dynamic Wake Meandering model, on the basis of which the model framework developed in this 
project is based, being included in the upcoming revised version of the IEC code [8] as a 
recommended practice, the suggested approach is potentially relevant for future revisions of the 
IEC code.   

This project report is organized as follows: Chapter 1 gives an introduction to the theme of the project. 
Chapter 2 introduces the concept of ABL stability, including its quantification and classification. 
Chapter 3 deals with kinematic turbulence modeling for non-neutral stability conditions, including 
attempts to tweak the classical spectral tensor to such conditions as well as a consistent generalization 
of the classical Mann spectral tensor model [11],[12],[13] to the non-neutral stability regime. Chapter 4 
focuses on the possible influence from the presence of a WF on the big turbulent eddies that dictates 
the wake meandering. The possible feed-back on the large scale turbulence structures is investigated 
under various stability conditions using a comprehensive set of full-scale offshore measurements. 
Chapter 5 demonstrates and validates the impact of ABL stability on wake dynamics, wake losses [14] 
and turbine fatigue loading [63] for a complete wind farm using the DWM modeling approach. 
Predictions and full-scale measurements from two offshore WF’s are compared for a full wind 
direction rose with a large range of different wake situations represented. Chapter 6 investigates 
possibilities for improving WT control for WT’s operating under WF conditions. Three possible 
approaches – individual pitch control, flap based control, and model based control – are discussed, and 
the capability of one of these approaches is demonstrated using a simplistic generic WF setup 
combined with a stability climatology derived from a huge set of full-scale data. Finally, Chapter 7 
describes a simplified rational WT design approach based on collapsing the probability distribution of a 
set of stability classes (i.e. the stability climatology) to only two “design stability classes”. In Chapter 8 
the project achievements are summarized. 
  



1 Introduction 
The dependence of WF production losses on atmospheric boundary layer (ABL) stability conditions 
was first investigated by Jensen [1] and Barthelmie [2], who took a phenomenological approach and 
analyzed large sets of full-scale offshore measurements from two Danish wind farms – Horn Rev and 
Nysted, respectively. For wind directions close to the directions of the WT rows within these farms, 
their analyses demonstrated a significant impact of ABL stability on WF production.  
The first to link this phenomenon to wake dynamics was Larsen et al. [3], who conjectured that, in a 
wake context, ABL stability affects primary wake meandering driven by large (lateral and vertical) 
turbulent scales, whereas wake expansion in the meandering frame of reference is a second order effect 
only. Because wake meandering is heavily load generating, the introduction this scientific explanation 
of the observations in [1],[2] at the same time extended the influence of ABL stability to also 
incorporate structural loading of the individual wind farm turbines.  
The goal of the present project is to model the impact caused by ABL stability conditions on both wake 
losses and structural loading of wind turbines operating in wind farms, to verify the developed models 
by comparison with full-scale wind farm measurements, and to apply the developed modeling 
framework for improved design of future MW turbines (incl. their load alleviating control system) 
operating in wind farms. The investigation is thus limited to WT’s operating under WF conditions. 
As part of the project, the basic conjecture launched in [3] has been validated by conducting and 
analyzing detailed full-scale LiDAR based wake measurements [4],[5]. This has enabled establishment 
of a direct link from ABL stability to the Dynamic Wake Meandering (DWM) model [6],[7], which has 
recently been included as a recommended practice in the IEC-61400 code [8]. Describing the non-
stationary characteristics of WF flow fields, the DWM model, in combination with an aeroelastic code, 
facilitates simulation of production as well as loading of WT’s operating in wake-affected ABL flow 
fields. 
The core of the DWM model is a split of scales in the wake affected flow field, with large turbulence 
scales being responsible for stochastic wake meandering, and small scales being responsible for wake 
attenuation and expansion in the meandering frame of reference as caused by turbulent mixing. Thus, 
essentially the DWM model assumes that the transport of wakes in the ABL can be modeled by 
considering the wakes to act as passive tracers driven by a combination of large-scale turbulence 
structures and a mean downstream advection velocity, adopting the Taylor hypotheses. 
The large scale turbulence structures used to describe wake dynamics in the DWM model is 
traditionally provided by a fast Navier-Stokes (NS) consistent kinematic turbulence model [9],[10] 
which, however, assumes neutral ABL stability and thereby neglect the effects of buoyancy on 
turbulence production and thus turbulence characteristics. As ABL stability mainly affects the large 
scale turbulence structures, the effect of buoyancy cannot be neglected. 
  



2 ABL stability and its classification 
In the past wind turbines were so relatively small that the rotor could be considered as embedded in the 
atmospheric surface layer. This allows for a relatively easy extrapolation of wind speeds measured at 
10 meter, say, to hub wind speeds at hub height using Monin-Obukhov (M-O) similarity theory [16]. 
Today, however, turbine hub heights are reaching beyond the surface layer where M-O theory is not 
valid. Of course M-O theory does not suddenly fail at a precise height; it’s validity rather fades away 
with increasing height in a stability dependent way. In this section we derive new theoretical results 
that extend M-O theory to cover the whole atmospheric boundary layer. From this a simple, practical 
model is made that extends wind profiles obtained by traditional M-O theory beyond the surface layer, 
and thus into the regime where modern WT’s are operating. The model was tuned to data from the M2 
meteorological mast located near the Horns Reef 1 wind farm [17] and has been validated against 
meteorological data from several other offshore locations. 

2.1 Stability, turbulence and wind turbine wakes 
Turbulence is produced in both mechanical and thermal processes. Due to the shear of the mean wind 
profile, turbulent diffusion will mix air parcels with different velocities, and the mixing process can be 
regarded as inelastic collisions between eddies. These collisions transform kinetic energy of the mean 
flow into turbulent kinetic energy (TKE). When relatively large eddies collide and get entangled, they 
create smaller eddies that in turn collide and create even smaller eddies etc. In this way large scale TKE 
transforms itself into progressively smaller scales in a process known as the turbulent energy cascade.  
The cascade eventually stops at very small scales where the TKE is dissipates into heat.  
The presence of a vertical heat flux will also affect the turbulence. During unstable atmospheric 
conditions the air next to the ground is heated.  This makes it expand and lifts up the whole atmosphere 
thus adding potential energy to the atmosphere. This energy is converted to kinetic energy, when 
buoyancy forces the hot air upwards. This extra kinetic energy input manifests itself both in the form of 
random TKE but also through the generation of larger and more organized convection rolls or 
convection cells. In the stable situation the heat flux is negative (downwards), and the thermally 
induced TKE production is negative, acting as a TKE drain rather than a source. Thus the thermal 
stratification dampens the turbulence and inhibits the generation of large scale vertical motion. 
Horizontal motion, on the other hand, is less disturbed because of the low the friction between 
horizontal layers which leads to increased shear. During strongly stable conditions even very shallow 
terrain features can generate drainage flows that cause slow, large scale wind fluctuations. The TKE 
therefore contains a large scale component, which has a site specific rather than a universal character. 
However, for onshore sites this occurs at rather low wind speeds, where wind turbines are not running, 
and offshore sites are flat enough to avoid the phenomenon. The nocturnal jet is another feature of 
stable conditions, which mainly occurs after sunset during the transition from unstable to stable 
conditions where the turbulence suddenly drops.  This causes an imbalance between the pressure 
gradient, the Coriolis force and the reduced friction that makes the flow accelerate and perform so 
called inertial oscillations. Low level jets can also result from various kinds of horizontal 
inhomogeneity such as inhomogeneous heating or roughness (i.e. land/sea) or the passage of a cold 
front.               
The convective heat transfer during unstable conditions is driven by hot air ‘bubbles’ generated at the 
ground. The bubbles rise and tend to cluster into larger, elongated structures. At typical hub heights 



these blobs of slow moving air are similar to turbine wakes both with respect size and velocity deficits. 
Similar coherent structures do not form during stable conditions, and fatigue loads caused by 
turbulence are reduced. On the other hand, turbine wakes decay more slowly in stable conditions thus 
increasing fatigue loads caused by wakes. Wake losses are also larger. 
With few exceptions [3],[18] traditionally only shear-generated turbulence (i.e. neutral conditions) has 
been considered when modeling WT production and WT loading both for WT’s operating in WF’s and 
for solitary WT’s. However, convection in the atmospheric boundary layer – i.e. buoyancy and its 
effect on the flow in terms of ABL stability – is prone to play a significant role for WT loading. This 
was demonstrated in [18] for solitary turbines, where especially tower and rotor loads under diabatic 
wind conditions are increased compared to the neutral case. For wind turbines operating in WF 
conditions the influence of ABL stability on loading is further enhanced [20], and in addition comes a 
significant effect on the production [19]. This is basically due to wake dynamics being highly sensitive 
to ABL stability conditions [4],[5]. 
Recognizing the importance of ABL stability the need for a precise definition and thus in turn 
quantification of stability arises preferable as based on easily accessible measured quantities. 

2.2 Rough surfaces 
The present project is confined to flows over flat and homogeneous terrain. To be more precise, we are 
talking about a rough surface with evenly distributed roughness elements (vegetation, buildings, waves 
etc.) that make the terrain homogeneous in a statistical sense. In the vicinity of the roughness elements, 
sometimes referred to as the buffer layer, the flow depends on the detailed shape of the surface and 
therefore does not have a universal character. However, just above the buffer layer a logarithmic layer 
is always found. In neutral conditions the logarithmic layer extends through the whole surface layer, 
while the logarithmic wind profile is modified in the upper part of the surface layer in both stable and 
unstable conditions. In stable conditions the profile tends to become linear with height, while it tends to 
become constant in unstable conditions, but in any case there will be a logarithmic layer just above the 
buffer layer.  In this region the turbulence is dominated by the large shear production term ε = u∗

3/(κ z), 
where u∗ denotes the friction velocity, κ is the von Kármán constant (~0.41), and z is the altitude.  The 
shear production term diverges for z→0.  Thermally induced TKE production is, on the other hand, 
evenly distributed over the boundary layer and cannot compete with the mechanical TKE production in 
the logarithmic layer. The logarithmic layer is therefore essentially neutral. The large shear production 
must be balanced by large TKE dissipation. The TKE is essentially constant in the surface layer, hence 
the lifetime of eddies must be very short near the ground (≅ z/u∗). It is therefore seems reasonable to 
assume that eddies created in the buffer zone decay before they have diffused up to the logarithmic 
layer. Eddies carry momentum, and when they decays, they do not simply die and disappear but must 
somehow pass their momentum to the flow in order to keep the momentum flux going. Otherwise the 
conservation law for momentum would be violated.  Molecular viscosity is too weak to do the job, so it 
has to be newborn eddies that carry the momentum on. After the momentum has been passed on to 
more and more generations of eddies, it seems plausible that the only ‘memory’ of the ancestors in the 
buffer layer is the conserved momentum flux. Thus motivated we make the following fundamental 
conjecture:  
The turbulence in the logarithmic layer is of a universal character that does not depend on stability or 
of the particular mechanism that generates friction at the ground. 



One consequence of this is that the statistical properties of the wind field in the logarithmic layer and 
above do not depend on the friction mechanism. Another consequence is that the influence of a rough 
boundary is fully characterized by the behavior in the logarithmic layer. Here the wind profile, 
decomposed in respectively longitudinal and lateral components, is given by 
 

𝑈(𝑧) =
𝑢∗
𝜅

  log 𝑧 𝑧0�  

𝑉(𝑧) = 0 
(2.2.1) 

where, again, κ ≅ 0.41 is the von Karman constant, and u∗  is the friction velocity. Thus wind veer and 
consequently Coriolis force effects are neglected in the logarithmic layer.  
This description involves three external parameters: the friction velocity u∗ (explicitly defined in 
equation (2.3.2) below), the roughness length z0 defined as the height at which the logarithmic profile 
vanishes (or seems to vanish – in case z0 is located outside the logarithmic layer) and the wind 
direction. The wind direction is defined as the direction of dU/dz for z=z0, with U denoting the mean 
velocity field. 
In practical flow modeling the asymptotic logarithmic form of the mean profile is used as boundary 
condition, and the buffer layer is not modeled at all. Below we will assume that the flow fields are 
solutions of this kind without any buffer layer, and the logarithmic layer extending right down to z=z0. 
Active devices such as fans and wind turbines may be used to generate friction. Moving roughness 
elements (e.g. waves on a sea surface) could also be used. These friction mechanisms inject both 
momentum and TKE, but the conjecture implies that TKE injected at the ground will dissipate in the 
buffer layer. Ultimately, we could generate friction by setting the whole ground in motion. Imagine that 
we set the ground in motion with velocity ∆U at time t0. From the beginning this would change the 
momentum transfer, but gradually a new steady state would emerge. The situation is different when 
observed from the Cartesian coordinate system x’y’z’ that follows the motion of the ground. Here the 
fluid experiences a velocity jump -∆U at time t0 and then gradually approach a steady state solution 
which must be characterized by the same u∗ and z0 as the flow field we started out with in the other 
system. Now suppose that 𝒖(𝑥′,𝑦′, 𝑧′, 𝑡) is a representative steady state flow field solution in the 
moving frame. Applying a Galilean transform along the x-axis (note that ∆U = (∆U,0,0)) we find that 
 u(x+∆U(t-t0),y,z,t) - ∆U 

 

(2.2.2) 

is a representative solution for the final steady state in the original frame. The logarithmic layer mean 
profile is obtained simply by subtracting ∆U from the original profile, which is equivalent to the 
replacement   
 z0  → z0  exp(κ ∆U/u∗) (2.2.3) 

In other words, a change of roughness is equivalent to the transformation:  
 𝒖(𝒙, 𝑡) → 𝒖(𝒙 + 𝛥𝑼(𝑡 − 𝑡0, 𝑡) − 𝛥𝑼     

(2.2.4) 
Strictly speaking this is a boost transformation that changes the velocity field, not the system of 
reference, but we will refer to it as a Galilean transformation anyway. The Galilean transformation does 
not alter the geometry of eddies, it only changes their velocities. Therefore z0 is not a characteristic 



length scale of the turbulence; it merely indicates the height where the logarithmic profile vanishes and 
nothing more. 
Suppose we have an ensemble of flow solutions for fixed values of the roughness z00, the angle α 
between the wind direction and the x-axes and a list q of all the other external parameters, and let 
U(z,z00,α,q) denote the corresponding ensemble mean velocity profile. U=(U,V,0) is a horizontal vector, 
which is conveniently represented as a complex number 
 W(z, z00, α, q) = U(z, z00, α, q) +ι V(z, z00, α, q) (2.2.5) 

Due to rotational symmetry (a rotated solution is a solution to the rotated problem) we have 
 W(z, z00, α,q)  =  exp{ια} W(z, z00, q) (2.2.6) 

where W(z; z00,q) is equal to W(z,z00,α,q) for α=0.  
Applying a Galilean transformation as above with ∆U=U(z0,z00,α,q) to all flows in the ensemble, we 
obtain a new ensemble consisting of flows with roughness lengths z0. Due to possible veer, the angle α 
may change, while the remaining external parameters in the list q can be chosen so that they are 
invariant. Therefore 
 W(z;z0,q)  =  exp{ιβ(z0,z00, q)} { W(z,z00,q)  - W(z0,z00,q) } (2.2.7) 

Formally β(z0,z00,q) is determined so that ∂W(z,z00,q)/∂z =|∂W(z,z00,q)/∂z| for z = z0. It represents the veer 
when going from z00 to z0, which must be an extremely small angle, when both z00 and z0 are in the 
logarithmic layer. Assuming this is the case we therefore ignore β(z0,z00,q) and rewrite (2.2.7) as 
 W(z,z0,q)  =   W(z,z00,q)  - W(z0,z00,q) (2.2.8) 

Differentiation with respect to z gives 
 ∂W(z,z0,q)/∂z = ∂W(z,z00,q)/∂z = ∂F(z,q)/∂z (2.2.9) 

where the point is that F is a function of z and q, and not depending on either z0 or z00. An integration 
then yields 
    W(z,z0,q)  =   F(z,q) - F(z0,q) (2.2.10) 

2.3 Extended Monin-Obukhov theory 
Conventional M-O theory describes mean profiles over homogeneous terrain, where the external 
forcing is also homogeneous, and the flow is statistically stationary in time. The external forcing 
consists of sensible heat transfer from the ground to the air and a vertical flux of horizontal momentum 
induced by the ground friction. We postulate that, given enough time, such a steady state would be 
reached. The Coriolis force is ignored, and the horizontal mean pressure gradient is assumed to be zero. 
The two should balance each other above the boundary layer, so you can either include both or ignore 
both. In the extended theory we are about to develop, the Coriolis force is included and a mean pressure 
gradient is allowed to have a horizontal component, which we assume is constant with height. Such 
flows are referred to as being barotropic. Baroclinic (non-barotropic) conditions arise in connection to 
horizontal mean temperature gradients.  



A sea surface is almost a perfectly flat and homogeneous terrain, and fairly flat and homogeneous 
terrain can be found onshore here and there. Uniform, stationary forcing is, on the other hand, 
somewhat of an abstraction. The change of insolation during the diurnal cycle makes weather an ever 
changing phenomenon, and even in the 6 months long polar night the flow shows signs of non-
stationarity. Even so theoretical, stationary solutions are of interest if the external forcing changes so 
slowly, that the turbulent flow can adjust itself to it in a quasi-steady fashion. Near the ground the 
turbulence consists of relatively small eddies with short lifetimes, and the quasi-steadiness seems to be 
a decent approximation. Higher above we run into larger eddies with larger time constants, and the 
steady state assumption becomes less and less feasible. However, the approach to steady state may be 
either through acceleration or de-acceleration, and chances are that the long term mean of observed, 
unsteady profiles may still be well represent by the mean steady-state profile. In the same way the 
effect of baroclinicity changes sign, depending on whether or not the flow goes against the mean 
temperature gradient, again with a tendency to reduce the net effect in the mean. In any case we must 
expect a growth with height of the deviations between an actual, ten minutes average profile and the 
corresponding theoretical, steady state profile. 
Having made these reservations we return the derivation of M-O theory.  M-O theory (Monin and 
Obukhov [21], see also Monin and Yaglom [22]) is based on analysis of the following set of model 
equations 
 

    

 
(2.3.1) 

 
 
Here (u,v,w) is the velocity vector in a standard Cartesian coordinate system xyz with vertical z-axis and 
the x-axis pointing along the surface wind. The flow is incompressible with constant density ρ, but 
nonetheless with buoyancy governed by the temperature θ. This is called the Boussinesq buoyancy 
approximation, and it works by assigning a kind of gravitational ‘charge’ θ/T, which responds to 
gravity in much the same way as an electric charge responds to an electric field without affecting the 
inertial mass. We have included the Coriolis force and the Coriolis parameter f. Only the vertical 
component of the Earth rotation vector is retained, so that the flow is effectively being modeled as an 
incompressible flow on a turn table. The centrifugal force can be written as a gradient, which has been 
absorbed into the gradient of pressure P and p=P/ρ.  Molecular viscosity ν has been included, but 
molecular diffusivity of θ  has been omitted. The temperature θ  corresponds to the potential 



temperature of the real world – i.e. the temperature after adiabatic compression to a reference pressure. 
Finally T is a representative value of the absolute temperature, and g is the acceleration of gravity. 
Please note these are the Navier-Stokes equations, without any Reynolds averaging or closure 
assumptions involved that could potentially compromise the dynamics.  
Next step is to introduce M-O scaling. To this end we define three scales1

 

 

   𝑢∗ = �−𝑢′𝑤′������ (2.3.2) 
   
 

𝜃∗ = −
𝜃′𝑤′������
𝑢∗

 (2.3.3) 

 
 

𝐿 =
 𝑇 𝑢∗2

𝑔 𝜃∗
 

(2.3.4) 
 

The overbars represent ensemble averaging. Both the friction velocity u∗ and the temperature scale θ∗ 
are to be evaluated close to the ground. L is the celebrated Monin-Obukhov length scale (actually first 
introduced by Obukhov).  We use these scales to make new non-dimensional variables: 

 
    

(2.3.5) 

There is of course only one way of doing this. Using the scaled variables the governing equations 
become 
   
 

    

(2.3.6) 

 Two numbers appear in these equations. The non-dimensional viscosity gives Reynolds number  

 
Re =

𝐿 𝑢∗
𝜈

 (2.3.7) 

and the non-dimensional Coriolis parameter gives the so called Monin-Kazanski parameter2

                                                 
1 Usually L is defined with an extra κ in denominator. We drop it to avoid κ from appearing in the scaled equations. 

   

2 It is common to define it as 𝜅 𝑢∗
𝑓 𝐿

, but we have dropped κ.  



     
𝜇 =

𝑢∗
𝑓 𝐿

 (2.3.8) 

When the Reynolds number is sufficiently large, as it always is in the ABL, we may assume that flow 
has reached the high Reynolds number limit, where there is no dependence on Re except at the tiniest, 
dissipative scales (millimeter size eddies).  
We cannot get rid of the second parameter µ. It should be included in the list q of external conditions 
that determine the shape of mean profiles. Potentially there would be more coming from boundary 
conditions. If we introduce a closure and solve the RANS equations, the boundary conditions would be 
characterized by the heat and momentum fluxes at the ground. We are not making any closures here, 
but it is natural to assume that these two would complete the list of external conditions. However, the 
non-dimensional values equal to 

 
 𝑢�′𝑤� ′������ =

𝑢′𝑤′������
𝑢∗2

= −1 (2.3.9) 

 
 𝜃�′𝑤� ′������ =

𝜃′𝑤′������
𝜃∗𝑢∗

= −1 (2.3.10) 

So no additional parameters. One could argue that the mean pressure gradient is also a condition. It is 
indeed, but it is linked to the surface momentum flux, so we cannot specify both at the same time. The 
mean value of θ at the surface is also a parameter, but we can add any constant to θ and still have a 
valid solution; hence we may assume that the value is zero or some other value without loss of 
generality. The potential temperature difference between top and bottom could also be used as an 
external condition, but then we cannot specify the surface temperature flux at the same time.  
 
After scaling, µ is therefore the only non-trivial external parameter. Finally, we use the results from the 
preceding section. This requires a sort of Galilei invariance that boosts the flow with a constant 
velocity. It should be remembered that the coordinate system is rotating, and is therefore not an inertial 
frame of reference. Transforming to a system that moves with constant velocity seen from a rotating 
system is therefore a transformation from a rotating system to another rotating system performing a 
complex spiraling motion. It is therefore not trivial that the Galilei transformation actually works. Thus 
if  𝒖(𝒙, 𝑡), 𝜃(𝒙, 𝑡) and 𝑝(𝒙, 𝑡) solve the equations and Δ𝑼 = (Δ𝑈,Δ𝑉, 0) then another solution is given 
by  𝒖(𝒙 + Δ𝑼(𝑡 − 𝑡0), 𝑡) − Δ𝑼, 𝜃(𝒙 + Δ𝑼(𝑡 − 𝑡0, 𝑡) and 𝑝(𝒙 + Δ𝑼(𝑡 − 𝑡0), 𝑡) − 𝑥Δ𝑉 + 𝑦Δ𝑈. This 
can be verified by direct insertion. The mean velocity profile can therefore be written as 
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If we rewrite 𝐹� again, now as 

 
    

(2.3.12) 

 then we get the familiar looking result 
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The difference from the conventional M-O profile is that ψm now is complex and depends on µ. The 
corresponding expression for the mean potential temperature profile can be derived along the same 
lines yielding     
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2.4 The geostrophic drag law 
Letting z→∞ we get the complex geostrophic wind 
 
  (2.4.1) 

We may of course write 𝐹�(∞,𝜇) as 
 
  

(2.4.2) 

where A and B are real. Using (2.3.12) and (2.3.8) then gives the geostrophic drag law 
 
  

(2.4.3) 

Compared to textbooks there is an extra term 𝜓m(𝑧̃0, 𝜇). We can always choose to set 𝜓m(0, 𝜇) = 0 
and, if z0/L is not too extreme, the extra term will be utterly small. Traditionally, the geostrophic drag 
law is derived in a different way, which can be found in lots of papers and textbooks. Below we give a 
short derivation based on J.R. Garratt [23].  
The key points are Rossby number similarity, surface layer scaling and asymptotic matching. Rossby 
number similarity is the idea that there exists an ‘upper layer’, where the velocity defect 𝑊�𝑑 = 𝑊� −
𝑊�𝐺 only depends on 𝜇 and the variable 𝑠 = 𝑧𝑓

𝑢∗
. The third variable, which 𝑊�𝑑 does not depend on, is 

taken as 𝑡 = 𝑧
𝑧0

 (not to be confused with the time variable). It is then suggested that the surface friction 

Rossby number Ro = 𝑢∗
𝑓𝑧0

 is so enormous that 𝑊�𝑑 does not depend on it. Then 𝑊�𝑑 of course does not 

depend on 𝑡 = 𝑠 Ro either. Furthermore, it is postulated that there exists an ‘inner layer’, where 𝑊� only 
depends on t and µ. Finally, the asymptotic matching postulates that a ‘matched’ layer exists where 
inner-layer and outer-layer scaling are simultaneously valid. It can then be shown, that this is possible 
only if the profile is logarithmic in the matched layer, and the logarithmic drag law follows – without 
the 𝜓m(𝑧̃0, 𝜇). Note, that in the surface layer  𝑊�  can be expressed as a function of 𝑧̃ = 𝜇 𝑠 and 𝑧̃0 = 𝜇 𝑠

𝑡
. 

The inner layer therefore only extends as far up as the logarithmic layer, and consequently the outer 
layer must fill the whole boundary layer (except the buffer layer). The matching takes place next to the 
ground, where  𝑧

𝑧0
  is not a large number. The argumentation therefore contradicts itself. In the 



alternative theory we have presented, an additional assumption like Rossby number similarity is not 
needed. Note that 𝑊�𝑑 can be written as 
 
 

𝑊�𝑑 = 𝐹�(𝑧̃, 𝜇) − 𝐹�(∞,𝜇) = 𝐹�(𝜇𝑠, 𝜇) − 𝐹�(∞,𝜇) (2.4.4) 

and therefore does not depend on  z/z0. 

2.5 A practical model 
A practical model for ‘tall’ wind profiles (i.e. extending beyond the surface layer) has been developed 
and implemented in a Windows application called AMOK.  AMOK is freely available from DTU Wind 
Energy. The model modifies conventional M-O profiles, hence we start describing the particular 
version of the M-O theory we have used and compare it to some data. For the conventional theory we 
have used the following profile functions  
 

 

 
(2.5.1) 

 
(2.5.2) 

 Recall that the 𝜓 functions are obtained as e.g. 
 
 

 

 
(2.5.3) 

The integrals can be done analytically, but we skip the expressions, which are fairly long. These profile 
functions are compatible with those suggested by Högström [24]. They seem to fit data quite well, even 
if a systematic optimization has not been attempted.  
Data for analysis are taken from met mast M2 that operated for many years at Horns Reef (se [17] for a 
description). In the data analysis the parameters L, u∗ and θ∗ were first determined from measurements 
of water temperature Tw measured 2m below the surface, air temperature Ta  measured at zT =13m and 
wind speed U measured at zU =15m. It should be safe to use conventional M-O theory for these heights 
since the measurements are taken in the surface layer. In addition we need the Charnock relation [25] 

 
 
  

(2.5.4) 

where ν is the kinematic viscosity, g = 9.82 m/s2, AC = 0.012 and BC = 0.012. The potential temperature 
at the surface and at zT are given by 

       
 

 

(2.5.5) 
(2.5.6) 

This leaves us with four equations (𝑇𝑎 and  𝑇𝑤 are absolute temperatures) 
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 𝑧0 =

𝐴𝑐𝑢∗2

𝑔
+
𝐵𝐶𝜐
𝑢∗

 (2.5.9) 

 
𝐿 =

𝑇𝑤𝑢∗2

𝜅 𝑔 𝜃∗
 (2.5.10) 

and four unknowns3

 

: z0, L, u∗ and θ∗ . Eliminating z0 and L we end up with two equations with two 
unknowns u∗ and θ∗, which are solved using Newton-Raphson iteration. Once this is done, the whole 
profiles can be predicted and compared to what was actually measured.  We have chosen to predict the 
ten minutes average wind speed U62 measured by the highest cup anemometer placed at 62m. The 
prediction is of course 

 𝑈62pred =
𝑢∗
𝜅 �log �
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𝑧0
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This was done for the whole data set yielding more than 170.000 pairs of measured and predicted 
values. Data with U15<3m/s, where turbines would not be running, were excluded from the analysis.  
As already mentioned, we cannot hope for a strong case-by-case correlation. However, the distribution 
of the predicted values may still be accurate if the prediction is unbiased, and if the standard deviation 
of the prediction error U62pred- U62 is small compared to the standard deviation of U62. It therefore 
makes sense to average over similar cases, where a case is defined by two numbers indicating wind 
speed and stability. U10 and 1/L is a popular choice, but it suffers from U10 and 1/L being strongly 
correlated, so that the flow cases are concentrated in a quite narrow strip in the (U10,1/L) plane. This 
makes it awkward to divide the plane into bins with approximately the same number of flow cases.  
We have found that u∗ and θ∗ is a much better choice, because these variables are fairly independent. 
The procedure is first to split the data into stable and unstable cases. Each of these are then split into 
sub-ensembles by cutting the (u∗,θ∗) plane into rectangular bins limited by quantiles of u∗ and θ∗. Using 
quantiles in steps of 10% leaves us with 100 stable bins and 100 unstable bins each containing 
approximately the same number of cases. Fig. 2 and 3 shows scatter plots (measured vs. predicted) of 
bin averaged values of U62 with separate plots for stable and for unstable conditions. The unstable cases 
are remarkably well predicted, and there is no need to make any corrections. Most stable cases are also 
well predicted, but however with some large over predictions. The over predictions occur in the corner 
where u∗  is small, while θ∗  is large. The biggest error (7m/s measured – 13.5m/s predicted) 
corresponds to the u∗ between the 0% and the 10% quantiles, and θ∗  between the 90% and the 100% 
quantiles. All the deviating points in fact reflect the positions of the corresponding bins in the (u∗ ,θ∗) 
plane. In this region z/L becomes so large, that the prediction is dominated by the term 𝜓m �

𝑧
𝐿
� =

−5 𝑧/𝐿. It is clear that conventional M-O theory fails in these cases.   

                                                 
3 Note that we now have returned to the conventional definition of L with a κ in the denominator. 



 
Figure 1: Predicted vs. measured values of bin averaged U62. Horns Reef; unstable cases. 

 

 
Figure 2: Predicted vs. measured values of bin averaged U62. Horns Reef; stable cases. 

 



 
Figure 3: 1/µ histogram obtained from the M2 met mast located at Horns Reef. The dip is caused 

by dropping wind speeds below 3m/s. 

The ambition here is to fit a simple model to data that can be used to extend velocity profiles beyond 
the surface layer. The theory has been based on the complex mean velocity W. This quantity 
incorporates veer, which, however, is not very important for wind energy applications. We will 
therefore concentrate on the absolute value |𝑊|. It should be noted, that the mean wind speed obtained 
from a cup anemometer is equal to 𝑈 = √𝑢2 + 𝑣2 , while |𝑊| = √𝑢�2 + 𝑣̅2; hence 
 |𝑊| ≈ 𝑈�(1 −

1
2

Ti2) ≈ 𝑈� (2.5.12) 

when the turbulence intensity Ti is not too large. The preceding discussions led to the conclusion, that 
general profiles depend on z/L, z0/L and µ. The latter appears as 1/µ in the scaled equations, where it 
represents the scaled Coriolis parameter in the Coriolis forcing term. In the surface layer this should 
somehow be a very small term, and can be neglected if we neglect the mean pressure gradient at the 
same time. Above the surface layer the two terms gradually become more and more important. 
Ironically, they tend more and more to cancel each other the higher we go up, but the other terms in the 
momentum equations decrease even faster with height. In terms of u∗ and θ∗ we have 
 1

𝜇
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 𝑢∗

=
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This is divergent for strictly neutral conditions, and one could a fear that very large values could occur.  
However, as the histogram in Fig. 3 shows, 1/µ  is generally a quite small number. It therefore should 
make sense to consider a perturbation expansion in terms of powers of 1/µ  
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𝑈MO is the conventional M-O profile, which is kept a factor. Keeping only the first term f1 and  
assuming  that f1 does not depend 𝑧̃0 , some improvements of Fig. 2 was found using 𝑓1(𝑧̃, 𝑧̃0) = −𝑏 𝑧̃2 
with b ranging between 1 and 2. However, the results were much better when written as 
 

𝑈(𝑧̃, 𝑧̃0, 𝜇) =
𝑈MO(𝑧̃, 𝑧̃0)

�1 + 𝑏 𝑧̃2 𝜇⁄
 (2.5.15) 

This gives the same as the first attempt for small 𝑏 𝑧̃2 𝜇⁄ , but behaves much better for large 𝑏 𝑧̃2 𝜇⁄  
where UMO is dominated by the linear 𝜓m, so that U approaches a constant value instead of doing crazy 
things. Fig. 4 shows results for b=3.6. The improvement compared to Fig.2 is quite obvious.  
 
 

 
Figure 4: Same as Figure 2 except using correction (2.5.15). 

 
Fig 5. and Fig. 6 show results from the meteorological masts 2 and 3, respectively, located next to the 
Nysted wind farm [26]. Here water temperature, air temperature at 10m and wind speed at 10m were 
used to predict the wind speed at 69m. Data from mast 2 are used for westerly wind directions, while 
data from mast 3 are used for easterly wind directions. The plots are very similar to those from Horns 
Reef. Conventional M-O theory works perfectly for the unstable cases, while the same pattern of 
deviations is seen in the stable case. The AMOK prediction is based on value b=3.6 obtained from the 
Horns Reef data without additional fitting, but even so the AMOK predictions are clearly better than 
the M-O results.  



 
Figure 5: Predicted vs. measured Nysted values of bin averaged U69. Unstable cases. 

 
 

 
Figure 6: Same as Fig. 2 and Fig.4 but for Nysted U69 data. 

 



Fig. 7 and Fig. 8 show results from the meteorological mast at the Læsø offshore site [27], which has a 
configuration identical to the Horns Reef M2 mast. The exact same pattern as for the Nysted and Horns 
Reef sites is recognized, which shows that the data analysis yields robust, reproducible results and 
further that the proposed correction actually works.    

 
Figure 7: Predicted vs. measured values of bin averaged U62. Læsø; unstable cases. 

 

 
Figure 8: Same as Fig. 2 and Fig.4 but for Læsø U62 data. 



Fig. 9 shows Weibull distribution fits to the predicted wind speeds at 30m, 45m and 62m for Horns 
Reef  M2 mast. Note, that separate distributions were fitted to stable and unstable data. The predictions 
from conventional M-O theory are also shown. The model performs well and is obviously an 
improvement over conventional M-O theory. Fig. 10 shows similar results for Nysted using correction 
parameter b=3.6. 

   
Figure 9: Fitted Weibull distribution parameters for Horns Reef M2. From left to right to left: A, 

k and mean value. 

 
Figure 10: Fitted Weibull distribution parameters for Nysted M2/M3. From left to right to left: 

A, k and mean value. 
 

 
Figure 11: Predicted and measured wind profiles for Fino 3. Left to right: unstable, stable and 

both. 



 
Fig. 11 shows measured and predicted mean wind speed profiles from the Fino 3 platform. Predictions 
were made from wind speeds and air temperature measurements at 50m and water temperature. Wind 
speed measurements were made with a Doppler Lidar and extend up to almost 1km. Again the M-O 
predictions are almost perfect for unstable conditions. The dip in the measured profiles around z=300m 
is caused by a reflection in the optical fiber. The stable conditions are also fairly well predicted 
although with a tendency to under-predict at very large heights. Combining all data we end up with a 
predicted profile that fits data quite nicely. The fact that it is spot on from 500m and up is of course just 
a matter of pure luck, but it indicates, that the model is behaving reasonable even for heights elevated 
high above the surface layer. This is very satisfactory for a relatively simple model, Which only 
requires a single additional adjustable parameter.  

2.6 Stability quantification and classification 
The main results of this chapter are summarized in equations (2.3.13) and (2.3.14). The complex profile 
functions 𝜓m(𝑧̃, 𝜇) and 𝜓h(𝑧̃, 𝜇) are universal with an unstable branch for 𝑧̃ < 0  and a stable branch 
for 𝑧̃ > 0. The profile can be calculated from 𝑢∗, 𝜃∗, T, g and f. Both L and µ can be derived from these. 
For a given site g and f are just constants, and the absolute surface temperature merely serves as an 
offset on the temperature that does not affect temperature differences. T appears in the definition of L, 
but it does not matter much if it varies a little. Thus we are left with just two parameters: 𝑢∗ and 𝜃∗, but 
other parameter pairs are of course possible. 
Above we used 𝑢∗ and 𝜃∗ because they are almost statistically independent. A wind climatology can be 
defined as the joint probability distribution 𝑢∗ and 𝜃∗, (or whatever variable pair we choose). In section 
7 we shall use the wind speed at hub height and 1/L. The use of 1/L was as a stability measure was 
suggested by Gryning et al. [28], who define stability classes according to the following scheme: 
 

Table 1 Definition of stability classes. 
Stability Class iC Description Condition 

-4 extremely unstable   -50m< 𝐿 <   0m 
-3 very unstable -100m< 𝐿 <  -50m 
-2 unstable -200m< 𝐿 <-100m 
-1 near unstable/neutral -500m< 𝐿 <-200m 
0 neutral  500m< |𝐿| 
1 near stable/neutral  200m< 𝐿 < 500m 
2 stable    50m< 𝐿 < 200m 
3 very stable    10m< 𝐿 <   50m 
4 extremely stable      0m< 𝐿 <   50m 

 
We adopt this classification here and have supplemented it with two more classes: extremely unstable 
(iC=-4) and extremely stable (iC=4). For a typical offshore site about 15% of all cases are found in the 
extreme classes. 
  



3 Kinematic turbulence model for non-neutral stability conditions 
The DWM model is, as previously mentioned, an efficient, reliable and popular medium-fidelity 
approach for dealing with non-stationary wake affected flow fields. For WF production estimation 
stationary WF flow field modeling as provided by e.g. full CFD RANS models or fast linearized CFD 
RANS models [35] may suffice. However, for load estimation of WT’s exposed to wake affected 
inflow, a non-stationary WF flow field description is inevitable. Insisting on models reflecting the basic 
physics of the problem we are thus left with either a CFD LES actuator disc or line a type of approach 
or, alternatively, the DWM type of approach. CFD LES models must – like the DWM model – be 
linked to an aeroelastic model of each and every WT in a WF to provide a complete picture of the load 
conditions inside a WF for all design load cases. This is extremely CPU demanding and considered 
unrealistic even with the capacity of nowadays extremely powerful state-of-the-ark super computer 
clusters. This challenge is further enhanced when including ABL stability as an additional design load 
case dimension and/or considering optimization of WF layout. CFD LES is, however, very useful in the 
development and validation of more simplistic model approaches. 
Being a medium-fidelity model the DWM model offers significant savings in CPU-demands, and it 
thereby facilitates detailed WF production/load design simulations to be conducted as will be shown in 
section 5. The core of the DWM model is a split of scales in the wake affected flow field, with large 
turbulence scales being responsible for stochastic wake meandering [6],[7],[29],[30],[31],[32],[33],[34] 
and small scales being responsible for wake attenuation and expansion in the meandering frame of 
reference as caused by turbulent mixing. Thus, essentially the DWM model assumes that the transport 
of wakes in the ABL can be modeled by considering the wakes to act as passive tracers driven by a 
combination of large-scale turbulence structures and a mean downstream advection velocity, adopting 
the Taylor hypotheses[16]. 
The large scale turbulence structures used to describe wake dynamics in the DWM model is 
traditionally provided by a fast Navier-Stokes (NS) consistent kinematic turbulence model [9],[10] 
which, however, assumes neutral ABL stability and thereby neglect the effects of buoyancy on 
turbulence production and thus turbulence characteristics. As ABL stability mainly affects the large 
scale turbulence structures, the effect of buoyancy on wake meandering can, however, not be neglected. 
The research questions to be dealt with in this section are thus how to include the effect of buoyancy on 
wake dynamics under non-neutral ABL conditions and in addition to investigate the effect of ABL 
stability on the small turbulent scales, which in the DWM approach is responsible for wake attenuation 
and expansion in the meandering frame of reference. The research strategy is initially to adopt the 
following fundamental conjecture [3]:   
In a wake context, ABL stability affects primary wake meandering driven by large (lateral and vertical) 
turbulent scales, whereas wake expansion in the meandering frame of reference is a second order effect 
only. 
With this conjecture as starting point, we will first investigate the possibilities for tweaking the classic 
Mann tensor model [9] to non-neutral stability conditions by suitable adjustment of the 3 independent 
input parameters of this model. Secondly, we will introduce a generalization of this spectral tensor, 
which consistently include buoyancy effects at the cost of additional two input parameters. The last part 
of this section deals with validation of the above stated conjecture. This part includes validation against 
detailed full-scale LiDAR and sonic measurements as well as detailed fundamental investigations based 
on high-fidelity CFD LES computations.  



3.1 Classic Mann spectral model 
To facilitate inclusion of ABL stability conditions in the DWM wake meandering modeling, we will 
initially fit the classic Mann spectral tensor model to stable and unstable atmospheric conditions, 
respectively, although it was developed for neutral stratification only. For this purpose we will use the 
stability classes defined in Table 1. 
To adapt the spectral tensor to different atmospheric stability conditions, we need fast response 
anemometers as e.g. sonic anemometers. As a demonstration example, we will adjust the Mann spectral 
tensor to the spectra computed from sonic observations performed at 10m, 20m, 40m, 60m, 80m, 100m 
and 160m above ground level (a.g.l.) at a tall meteorological mast located at Høvsøre, Denmark. To 
ensure uniform inflow conditions we will limit the investigation to an upwind sector, where the 
upstream fetch is very flat and homogenous. 
Data from the 20 Hz-sonics from 10m and up to 160m were simultaneously available for nearly one 
year. The time series were analyzed based on 10-minute periods and subsequently classified in the 
above mentioned stability classes. Two different adaptations approaches of the spectral tensor are 
performed – one based on the full Reynolds stress tensor, and another based on a reduced Reynolds 
stress tensor.  
For the full Reynolds stress tensor case, the analysis comprised all non-zero components of the 
Reynolds stress tensor. Auto-spectra of the u, v and w wind speed turbulence components as well as the 
uw cross-spectrum were normalized with the variance of the longitudinal turbulence component, 2

uσ , 
and subsequently averaged over all 10-minute runs within each stability interval and at each height. 
Before averaging the spectra’s independent variable was changed from frequency to normalized 
frequency n = fz/U, where f is the frequency in Hz, and U is the mean wind speed at height z. The Mann 
spectral tensor was then fitted to the spectra by adjusting the three parameters of the model: 1) A length 
scale describing the size of the energy-containing eddies, LM ; 2) A measure of the energy dissipation, 
αε2/3, where α is the spectral Kolmogorov constant, and 3) An eddy life time parameter describing the 
degree of anisotropy, Γ. The fitting was performed as described in [9]. 
The result of the fit of the Mann spectral model to the average spectra observed at 40m a.g.l. at 
Høvsøre is shown in Fig. 12.  



 
Figure 12:  Normalized spectra of the u (red), v (green), w (blue) wind speed components and the 
real part of the normalized uw-cross spectrum (black) from the sonics at 40m for different 
stability conditions at Høvsøre, Denmark. The observations are the dots and the Mann spectral 
model fits are the solid lines. 

The Mann spectral tensor adapts well to the observations for stable and neutral stratifications, but 
underestimates significantly the v-spectra in the low frequency regime for unstable and very unstable 
stratifications. It slightly under-estimates the uw co-variance, but fits well the u- and w-spectra for 
nearly all stability categories, despite the fact that the model was developed for neutral stratification. 
The underestimation of the v-spectra in the low frequency regime is particularly unfortunate, because 
the v spectrum, in general being more energetic than the w spectrum, plays the dominant role in the 
meandering process in the DWM model. 
 
 



A heuristic explanation of the lack of match of the v spectra is the following: The Mann spectral tensor 
is basically developed for neutral conditions and consequently not necessary able to adjust perfectly to 
all stability conditions. As only the u and w turbulence components are correlated at an arbitrary point 
in space (e.g. the present observation point), the v spectrum is sacrificed in the fitting procedure, 
because it is significantly less energetic than the u spectrum, the w spectrum and the uw cross-spectrum 
taken together. 

 
 
Figure 13: Normalized spectra of the v (red) and w (green) wind speed components from the 
sonics at 40m for different stability conditions at Høvsøre, Denmark. The observations are the 
dots and the Mann spectral model fits are the solid lines. The stability goes counter clock-wise 
from very stable in the top right to very unstable in the bottom right. 

The DWM model does not depend on the u turbulence component. For the present purpose the above 
described inexpediency can therefore be mitigated to a certain degree by adapting the Mann spectral 



tensor to a reduced Reynolds stress tensor, where only the v and w turbulence components are taken 
into account. Following the procedure described for the full Reynolds stress tensor, the Mann spectral 
tensor is then fitted to the normalized u and v auto-spectra. Fig. 13 illustrates the result of this fit of the 
Mann spectral model to the average spectra observed at 40m a.g.l. at Høvsøre.  
The Mann model adapts both quantitatively and qualitatively well to the observations for stable and 
neutral stratifications. For unstable stratifications qualitative deviations can be observed, but the energy 
in the low frequency spectral regime, which is of primary importance in relation to wake meandering, 
is much better represented here than in the full Reynolds stress tensor fit (cf. Fig. 12).  
With reference to the reduced Reynolds stress tensor fitting Fig. 14 shows the variation with height z of 
the three adjusted input parameters to the Mann spectral tensor for the different stability conditions. 
The length-scale profile, illustrated in the middle panel, shows that under unstable atmospheric 
conditions, the size of the turbulent eddies is larger compared to neutral and stable conditions as 
expected. The plot to the right shows that the anisotropy is strongest closest to the ground and that it 
only changes appreciable with stability in this region. 

 
 
Figure 14: Adjusted parameters of the Mann spectral model to the normalized spectra from the 
sonic observations at different stability conditions and heights at Høvsøre, Denmark. Neutral 
stratification is shown in black, stable in blue and unstable in red. The shorter dashed curves are 
the more extreme stratification. The normalized energy dissipation is shown in the left panel, the 
length-scale in the middle panel and the degree of anisotropy in the right panel. 

3.2 Generalized spectral tensor 
Alternatively to tweaking the classic Mann spectral tensor to operate outside the regime it is designed 
for, a more consistent approach is to use a newly developed generalized spectral tensor, which includes 
buoyancy effects, for the description of the WF turbulence field. This is in particular true for the 
description wake meander driving large scale part of this turbulence field. First we will give a summary 
description of the generalized spectral tensor; then we will describe a rational approach for estimation 



of its 5 model parameters; and finally we will briefly focus on validation of its basic features using full-
scale data from the HATS field experiment carried out near Kettleman City, California [41]. 

3.2.1 Buoyancy dependent spectral tensor formulation 
The generalized spectral tensor, Φij(k), resulting from the governing Rapid Distortion Theory (RDT) 
equations including buoyancy effects [36],[37],[38], contains two extra parameters, in addition to those 
of the classicMann spectral tensor model, where k(t) = (k1, k2, k30-k1(dU/dz)t) is a three dimensional 
wave vector, and t is time. These parameters are: 1) a stability parameter (the Richardson number); and 
2) the rate of destruction of temperature variance.  
The RDT equations, which include the linearized momentum and the temperature equation in Fourier 
space, evaluates in time under the influence of a constant wind shear (dU/dz) and a constant gradient of 
potential temperature (dθ/dz) from an initial isotropic state of turbulence. In isotropic turbulence, the 
velocity-spectrum tensor is 
 

Φ𝑖𝑗(𝒌0) =
𝐸(𝑘)
4𝜋𝑘2
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where k0 = k(0) and k is the length of the wave vector k. The energy spectrum, E(k), is given by [39] as 

 
𝐸(𝑘) = 𝛼𝜀2/3𝐿5/3 (𝑘𝐿)4

(1 + (𝑘𝐿)2)17/6 , (3.2.2) 

where α ≈ 1.7 is the Kolmogorov constant, ε is the rate of viscous dissipation of specific turbulent 
kinetic energy (TKE), and L is a turbulence length scale. 
In order to make the model stationary, the time dependency in the model is removed by incorporating 
the general concept of an eddy life time, τ(k). The parameterization of τ(k) is adapted from the classic 
Mann spectral tensor model. In the inertial sub-range, the life time of eddies are proportional to k-2/3, 
and the assumption in the Mann model, for scales larger than the inertial sub-range, is that the eddy life 
time is proportional to k-1 divided by their characteristic velocity given by 
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thus resulting in eddy life times proportional to k-2/3 for k → ∞ and to k-1 for k → 0.  
For the temperature variable, the isotropic three-dimensional spectrum is given as 
 

Φ𝜃𝜃(𝒌0) =
𝑆(𝑘)
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 , (3.2.4) 

 
where S(k) is the potential temperature energy spectrum containing the form of the inertial sub-range 
[16] as 



 
𝑆(𝑘) = 𝛽𝜀−1/3𝜀𝜃𝐿5/3 (𝑘𝐿)2

(1 + (𝑘𝐿)2)11/6 , (3.2.5) 

Here εθ is the dissipation rate for half the temperature variance, and β = 0.8 is a universal constant [40]. 
Based on the above formulations of isotropic velocity and temperature spectra combined with the Mann 
eddy life time formulation, RTD results in an anisotropic spectral tensor including buoyancy of the 
form Φij(k) = Φij(k; αε2/3, L, Γ, Ri, ηθ), where Ri denotes the Richardson number [16] resulting from the 
temperature equation, and 
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where the potential temperature, θ, as well as dU/dz and dθ/dz are representative of the height of 
interest.  
To summarize, the five adjustable model parameters, which are attainable from single-point 
measurements are: 1) 𝜀2/3; 2) L, which represents a representative size of the energy containing eddies; 
3) Γ, which is a measure of the degree of turbulence isotropy; the Richardson number Ri [16]; and 5) ηθ 
as defined above. Note, that for Ri = 0 and ηθ = 0, the generalized spectral tensor degenerates to the 
classic Mann spectral tensor. 
Simulation of consistent 3D synthetic turbulence fields requires knowledge of cross-spectra between 
turbulence components. The spectral tensor model provides the cross-spectrum, χij, between any two 
velocity components, or between any velocity component and temperature, as 
 χ𝑖𝑗�𝑘1,Δ𝑦,Δ𝑦;𝛼𝜀2/3, 𝐿,𝛤,𝑅𝑖, 𝜂𝜃�

≡ 𝛼𝜀2/3𝐿5/3 �Φ𝑖𝑗�𝒌;𝛼𝜀2/3, 𝐿,𝛤,𝑅𝑖, 𝜂𝜃� 𝑒i(𝑘2Δ𝑦+𝑘3Δ𝑧)𝑑𝑘2𝑑𝑘3 , (3.2.7) 

where Δy and Δz are transverse and vertical separations, respectively. Thus, based on such cross-
spectra, the requested turbulence field can be simulated using the approach described in [10], however, 
presently only implemented for the velocity components.  

3.2.2 Fit of model parameters 
An automated fit procedure of the 5 model parameters is devised as based on a chi-squared (χ2) fitting 
technique similar to the one applied for the classic Mann spectral tensor [9].  The basic idea of the χ2 fit 
is to minimize the sum of the squared differences between the theoretical and the estimated spectra and 
co-spectra. Compared to fitting of model parameters of the classic spectral tensor the χ2 function, 
corresponding to the generalized spectral tensor, is expanded by including the θ auto-spectrum as well 
as the uθ and wθ co-spectra and takes the form  



 

 

(3.2.8) 

where N is the number of wave numbers in the estimated spectra, subscript t corresponds to the model 
spectra and co-spectra, and F(*) is a spectrum with subscripts referring to type of spectrum – where not 
explicitly indicated as velocity components u, v, w, component 1 refers to u, component 3 refers to w 
and component 4 refers to θ normalized [12]. For a given spectrum Fmax is the corresponding maximum 
value in the measured spectrum. 
In the fitting routine the χ2 function is called through an interpolation function giving the requested 
model spectral values as based on a pre-computed look-up table with 4 dimensions representing the 
parameter set (Γ, Ri, ηθ, kL). The computation of the look-up table is CPU-demanding, and it was 
consequently carried out on the DTU’s super computer facility Gorm for the following parameter 
ranges: Γ ϵ [0,5]; Ri ϵ [-0.4,0.2]; ηθ ϵ [0,0.35]; and kL ϵ [0.001,1000]. The ranges of Ri and ηθ was 
defined based on inspiration gained from empirical M-O relations [16]. It should be stressed, that these 
relations are not explicitly incorporated in the model – the sole purpose of using them in the present 
context is to get an idea of what ranges of these two parameters should be expected. 
The fitting routine is initialized by evaluating the χ2 function (3.2.8) with parameter values of 𝛼𝜀2/3, L 
and Γ obtained from fitting the classic Mann spectral tensor to respectively the observed velocity auto-
spectra and the uw co-spectrum as well as with values of the two additional parameters ηθ and Ri 
estimated using empirical MO-relations. 

An alternative simplistic approach, based on observed fluxes, to drive the buoyant spectral tensor-
model is derived in Appendix A.  

3.2.3 Model validation 
This section deal with a direct validation of the generalized spectral tensor against full-scale 
measurements – further details can be found in [12]. In section 5 we will present a validation of the 
integrated DWM/HAWC2 platform against full-scale load measurements from the Lillgrunden offshore 
WF, which may be considered an indirect validation of the spectral tensor performance for our 
particular purpose. 
The generalized spectral tensor model is here validated using full-scale data from the HATS field 
experiment carried out near Kettleman City, California [41]. A number of different setup 
configurations were explored in the HATS experiment, where basically two horizontal arrays of sonic 
anemometers, each measuring temperature and three-dimensional wind velocity, were placed at 
different heights above the ground. The experimental setup is illustrated in Fig. 15, with the horizontal 
s-array, consisting of five sonic anemometers, placed at height zs above the ground, and the nine sonics 
in the d-array mounted parallel to the s-array at height zd above ground level. The sonics in the s- and 
d-arrays were horizontally separated by Ss and Sd, respectively. 



 
 

 
Figure 15: The HATS experimental setup. Sonic anemometers is mounted vertically in the single 

and double array located respectively at (zs; zd) above the ground. Source: Horst et al. (2004). 

Both one-point and two-point spectral behavior has been investigated. We estimate velocity auto-
spectra and the co-spectrum of u and w from the measured time-series as 
 

 (3.2.9) 

and the temperature spectrum and the component-wise kinematic heat fluxes, respectively, as 
 

 
(3.2.10) 

where f = 20 Hz is the frequency, and 𝑢�𝑖(𝑓) and 𝜃�(𝑓) are the complex-valued Fourier transforms of 
respectively the ith velocity component and  the temperature at height z. The atmospheric stability was 
measured in terms of the ratio z/Lo, with the Monin-Obukhov length Lo defined in equation (2.3.4). 
Note, that we have added the subscript “o” to the Monin-Obukhov length notation in this context in 
order to distinct this quantity from the turbulence length scale.  

One-point spectra 
Two validation examples, representing an unstable and a stable ABL stratification, respectively, are 
shown in Fig. 16 and in Fig. 17. The fitted model parameters appear from Table 2 below. 

Table 2: Spectral tensor parameters determined from χ2-fits for given stability identifier z/Lo. 

 



 
Figure 16: Example of model (co-) spectra fitted with observations at z = 5 m for stable conditions 

characterized by z/Lo = 0.08. Smooth lines are model predictions and ragged lines are 
measurements. 

 

 
Figure 17: Example of model (co-) spectra fitted with observations at z = 5 m for unstable 

conditions characterized by z/Lo = -0.08. Smooth lines are model predictions and ragged lines are 
measurements. 



Fig. 16 shows model spectral fits and the corresponding measured spectra for a stable ABL 
stratification characterized by z/Lo = 0.08. The left hand graph shows velocity spectra as well as the co-
spectrum of uw; the right hand graph shows the temperature spectrum as well as the co-spectra of uθ 
and wθ. It is observed that the velocity and temperature spectra follow the expected power law in the 
inertial sub-range, i.e., F(k1) ∼ k1

-5/3. This is true both for model spectra and for measured spectra. The 
uw and wθ co-spectra follow, as expected, the power law F(k1) ∼ k1

-7/3 in the inertial sub-range for both 
modeled and measured co-spectra. Compared to the wθ co-spectrum, the observed uθ co-spectrum 
decay much faster with wave number, i.e. as F(k1) ∼ k1

-3,  thus supporting the modeling predictions by 
Wyngaard and Cot´e [42] 
Fig. 17 shows model spectral fits and the corresponding measured spectra for an unstable ABL 
stratification characterized by z/Lo = -0.08. A significant increase in the energy content of the u-
spectrum in the (very) low frequency regime is observed, which in turn causes an increase in the uw 
and uθ co-spectra at lower frequencies. This is presumable a meso-scale phenomenon, which is not 
included in the model framework. We therefore high-pass filtered the data (as shown by dotted lines in 
Fig. 17) during the spectral fitting, and the five spectral tensor parameters displayer in Table 2 were 
thereby obtained.   

Two-point spectra 
Prevailing wind directions close to normal to the plane of sonic arrays are selected for this analysis, and 
the cross-spectra are further rotated, such that the mean velocity field is (U, 0, 0). The model 
coherences and cross spectral phases are subsequently calculated. The coherence comparisons are 
shown in Fig. 18 and in Fig. 19 for vertical and horizontal separations, respectively, for both stable and 
unstable ABL conditions.  
For vertical separation, the model spectra are fitted to measurements from the two sonics located in the 
middle of respectively the s- and d-array to obtain the 5 model parameters. The average of these two 
sets of parameters are evaluated and subsequently used as inputs to calculate spectral tensor coherences 
and phases. There was no significant difference in the parameter values obtained from the two single 
sonics and those obtained from fitting averaged spectra. The lateral coherence is calculated between 
the sonics denoted S#3 and S#4, respectively. 
 



 
Figure 18: Measured (ragged lines) and model predicted (smooth lines) coherences for stable 

(z/Lo = 0.08) and unstable (z/Lo = -0.08) stratification for vertical separation Δz = 1 m. 

 
Figure 19: Measured (ragged lines) and model predicted (smooth lines) coherences for stable 
(z/Lo = 0.08) and unstable (z/Lo = -0.08) stratification for horizontal separation Δy = 0.63 m. 

By nature affecting predominantly the low frequency spectral regime, atmospheric stability affects the 
coherence, which accordingly increases from stable to unstable stratification. ABL stability has the 
most noticeable effect on the w-coherence, while the u-coherence is less affected for both vertical and 
horizontal separations. This was also observed by Chougule et al. [43] (for vertical separation). 

 



Finally, the phases in the modeled cross-spectra are compared with the observed cross spectral phases 
and shown in Fig. 20 for both stable and unstable ABL stratification and, in both, cases referring to a 
vertical separation of one meter. It can be observed that φv (and φθ) > φu > φw (≈ 0), which is consistent 
with the reportings in  Chougule et al. [44]. There is no systematic effect of atmospheric stability on the 
phases, which is consistent with the reportings in  Chougule [11]. Both the model and observed spectral 
phases for horizontal separation were zero. 

 

 
Figure 20: Measured (ragged lines) and model predicted (smooth lines) cross spectral phases for 

stable (z/Lo = 0.08) and unstable (z/Lo = -0.08) stratification for vertical separation Δz = 1 m. 

3.3 Validation wake stability conjecture against full-scale measurements 
The fundamental wake stability conjecture launched in [3] has been validated against detailed full-scale 
LiDAR and sonic wake measurements. This section provides an overview – more details can be found 
in [4],[5].  
As mentioned, the major impact from buoyancy on the ABL turbulence structure is on the large 
turbulent scales, and being largely based on a convenient split in turbulence scales it may be straight 
forward to include atmospheric stability aspects into the framework of the DWM model. Crucial in this 
regard is if the specific scale split applied in the DWM model is such, that ABL stability affects 
primary the (lateral and vertical) turbulent scales, which drives the wake meandering. This is the 
essence of the fundamental wake stability conjecture.    
For a variety of stability conditions, we will explore this conjecture partly by analyzing full-scale sonic 
velocity measurements and partly by analyzing both organized wake deficit flow structures and wake 
dynamics as based on full-scale LiDAR measurements.  
We examine this conjecture using a 500kW example turbine. The analysis will focus on lateral 
turbulence characteristics, since this turbulence component is the most important regarding wake 
meandering. First a large number of full-scale sonic measurements are analyzed with the available data 



material binned with respect to both mean wind speed (1m/s bins) and ABS stability (7 stability 
classes; cf. Table 1). Subsequently dedicated full-scale LiDAR measurements are used to resolve and 
compare wake characteristics for three different stability conditions with mutually comparable inflow 
mean wind speeds. 
3.3.1 Sonic measurements 
The measurement campaign was conducted from June 2011 to early January 2012 at the DTU Risø 
Campus, and sonic data recorded 16.5m a.g.l. are used for this analysis. To ensure “homogeneous” 
inflow conditions, only data from the (prevailing) wind direction sector (120° - 150°) is used, resulting 
in 1122 available 10-minute time series covering the mean wind speed regime ranging from 4-10m/s. 
The distribution of mean wind speeds conditioned on inflow direction is illustrated in Fig. 21.  
 

 
 

Figure 21: Mean wind speed distribution conditioned on inflow direction. 

The selected data population is binned with respect to mean wind speed and ALB stability. The 
resulting bin matrix is shown in Table 3, where the numbers reflect the number of available 10-minute 
time series available within each particular bin. 

Table 3:  Bin matrix specifying number of available 10-minute time series. 
Wind speed 

interval [m/s] 
Very 

unstable 
Unstable Near 

neutral- 
unstable 

Neutral Near 
neutral- 
stable 

Stable Very 
stable 

4-5 6 2 2 12 12 68 108 
5-6 40 20 12 28 28 84 90 
6-7 36 12 18 58 16 26 6 
7-8 38 56 44 66 12 4 0 
8-9 8 12 56 60 6 0 0 

9-10 0 2 4 18 0 0 0 



For each bin, the power spectrum of the lateral turbulence component is evaluated as based on the 
available 10-minute time series. Prior to the spectral analysis all data have normalized with their 
respective mean wind speeds and de-trended assuming a linear trend. This is done to assure un-
weighted averaging (assuming constant turbulence intensity within stability-wind-speed bins) in the 
subsequent averaging of spectra belonging to the same bin, which is performed to improve statistical 
significance of the spectral estimates. Aiming at investigating the spectral characteristics wind speed 
bin-wise, the described bin-wise normalization of spectra does not provide any restriction for the 
present data analysis.   
Examples of bin-normalized spectra, associated with mean wind speeds in the interval [6; 7]m/s, are 
shown in Fig. 22. 

 
Figure 22: Normalized spectra for various stability conditions and associated with mean wind 

speeds in the interval [6;7]m/s. 

In neutral conditions the turbulence generation is dictated by mechanical friction. For non-neutral ABL 
conditions buoyancy inters the scene as an additional turbulence source term. The consequence is that 
turbulence intensity as well as turbulence structure varies with stability condition. As seen from Fig. 
22, ABL stability conditions hardly affect the spectral inertial sub-range regime, but significantly alter 
the large scale energy-containing spectral regime [16], where the turbulent energy is produced. In the 
present analysis we will, as already indicated, explore non-neutral stability conditions mean wind speed 
bin-wise with focus on derived effects on wake meandering dynamics. 
For this purpose, we will now focus on the energy balance, quantified in normalized numbers, between 
“large” and “small” scale turbulence as function of ABL stability condition. Analogues, we will 
investigate the dependence of the total spectral energy on stability conditions. To relate to the DWM 
split in scales [6], “large” scale turbulence is in this context defined as turbulence associated with 
frequencies below a frequency split given by fs = U/(2D), where U denotes the mean wind speed and D 
is the diameter of the rotor in question, and “small” scale turbulence in analogy defined as turbulence 
associated with frequencies above fs. In the present analysis, U will refer to the average of 10-minute 



mean wind speeds belonging to a particular mean wind speed bin, and D is defined by the previously 
mentioned Nordtank 500kW example turbine with a rotor diameter of 41m. This turbine was selected 
as example turbine, because it is the turbine on which the subsequent LiDAR measurement analysis is 
based. 
Table 4 shows the dependence of turbulence variance on ABL stability conditions for the analyzed 
mean wind speed bins, whereas Table 5 and Table 6 show the ABL stability dependence of “large” 
scale turbulence variance and of “small” scale turbulence variance, respectively. 

Table 4: Bin specific variance normalized with variance associated with neutral conditions. 
Wind speed 

interval [m/s] 
Very 

unstable 
 

Unstable Near 
neutral- 
unstable 

Neutral Near 
neutral- 
stable 

Stable Very 
stable 

4-5 1,00 0,83 1,20 1,00 1,12 0,77 0,50 
5-6 1,51 2,06 1,07 1,00 0,94 0,77 0,54 
6-7 1,23 1,00 0,93 1,00 0,95 0,75 0,77 
7-8 1,22 1,19 1,04 1,00 0,97 1,28 - 
8-9 0,96 0,80 0,88 1,00 0,77 - - 

9-10 - 0,86 0,83 1,00 - - - 
 

For all mean wind speed regimes Table 4 reflects, as expected, a clear trend with the turbulent energy 
increasing relatively for unstable ABL conditions and decreasing relatively for stable ABL conditions. 
As seen, this difference in energy level is up to a factor between 2 and 3 for low mean wind speeds 
which, however, is expected to be reduced for higher mean wind speeds, where the mechanically 
generated turbulence gradually increases relative to the buoyancy generated part. A few “outliers” are 
observed which is attributed to the limited number of statistical degrees of freedom available for 
spectral averaging in certain bins (cf. Table 3).   

Table 5: Bin specific “large” scale variance normalized with “large” scale variance associated 
with neutral conditions. 

Wind speed 
interval [m/s] 

Very 
unstable 

Unstable Near 
neutral- 
unstable 

Neutral Near 
neutral- 
stable 

Stable Very 
stable 

4-5 1,78 1,37 2,93 1,00 0,89 0,76 0,52 
5-6 2,23 3,63 1,47 1,00 0,90 0,63 0,37 
6-7 1,71 1,07 1,09 1,00 0,96 0,50 0,65 
7-8 1,51 1,41 1,16 1,00 0,95 1,33 - 
8-9 0,99 0,72 0,88 1,00 0,59 - - 

9-10 - 0,60 0,77 1,00 - - - 
 
The results in Table 5 reflects the same clear trend as identified for the total spectral energy, namely 
that the “large” scale spectral energy increases significantly with increasing buoyancy related 
turbulence production and vice versa. 
  



Table 6: Bin specific “small” scale variance normalized with “small” scale variance associated 
with neutral conditions. 

Wind speed 
interval [m/s] 

Very 
unstable 

Unstable Near 
neutral- 
unstable 

Neutral Near 
neutral- 
stable 

Stable Very 
stable 

4-5 0,78 0,65 0,69 1,00 1,21 0,78 0,51 
5-6 1,12 1,26 0,86 1,00 0,96 0,83 0,63 
6-7 0,94 0,94 0,83 1,00 0,94 0,90 0,87 
7-8 1,04 1,04 0,97 1,00 0,98 1,27 - 
8-9 0,92 0,85 0,89 1,00 0,90 - - 

9-10 - 1,11 0,85 1,00 - - - 

Contrary to the results presented in Table 4 and Table 5, the results in Table 6 show no clear trend with 
regard to stability dependence of the “small” scale turbulence energy level. Therefore, with the “small” 
scale turbulence energy level being roughly invariant with respect stability conditions, and the “large” 
scale turbulence energy level being highly dependent on ABL stability conditions, the present 
investigation shows that the DWM split in scales roughly “matches” the split in scales between the 
turbulence energy-containing range and the turbulence inertial sub-range, thus in turn confirming the 
DWM stability conjecture.  
3.3.2 LiDAR measurements 
The full-scale LiDAR measurements analyzed in this section relate to the same measuring campaign as 
described above. As a supplement to the sonic recordings, the Nordtank turbine was equipped with a 
pulsed LiDAR system mounted on a platform at the rear of the turbine nacelle, thus facilitating cross 
sectional scanning (i.e. cross sections perpendicular to the rotor axis) of the wake affected flow field 
behind the turbine. A detailed description of the experimental setup can be found in [5], where also the 
principle of extracting the mean wind speed characteristics from LiDAR measurements recorded 
outside the wake regime is described. In the present analysis, mean wind speeds associated with the 
LiDAR recordings are derived using this technique. The experimental setup is shown in Fig. 23. 
 

 
 

Figure 23: LiDAR mounted on the rear of the NTK 500kW turbine at the DTU Risø test site. 



The wake characteristics in downstream cross sections are resolved as based on a Cartesian scan 
pattern consisting of 49 measurement points (i.e. 7×7) as illustrated in Fig. 24. For various stability 
conditions, the basic idea is to resolve and compare the wake deficit characteristics in the meandering 
frame of reference (MFoR) as well as the wake deficit dynamics. This is performed for otherwise 
similar inflow conditions; i.e. mean wind speed and mean wind direction. 

 

Figure 24: LiDAR scan pattern in 5 downstream flow field cross sections. 

The wake deficit dynamics is obtained from “instantaneous” LiDAR cross sectional scans using the 
wake deficit tracking procedure introduced in [30]. With the wake deficit dynamics determined, it is 
straight forward to perform a transformation from the fixed frame of reference (FFoR), in which the 
measured wake affected flow is resolved, to the MFoR.  
To obtain robust results, time series with a span ranging between 3 and 5 hours is used in this part of 
the investigation. To ensure a sufficient amount of data complying with the requirements, this means in 
turn that it is necessary to merge the former two unstable classes (i.e. “very unstable” and “unstable”) 
into a new stability class denoted “unstable collapsed”. Eventually three test cases, associated with low 
wind conditions and therefore pronounced deficits (i.e. high trust), are selected for this part of the 
analysis. The characteristics of the selected time series appear from Table 7 below. As expected the 
ambient turbulence level is increased with ABL stability conditions changing from stable over neutral 
to unstable. 

Table 7: Overall characteristics of test cases. 
Stability condition Mean wind speed at 

hub height (U0) [m/s] 
Turbulence intensity 
at hub height [m/s]  

Length of time series 
[hour] 

Unstable collapsed 6.82 0.15 3.3 
Neutral 7.03 0.14 3.2 

Very stable 6.76 0.10 5.5 

The results for the wake deficits, as expressed in the MFoR, are shown in Fig. 25 for downstream 
distances ranging between 1D and 5D, where D denotes the rotor diameter. It is evident that the deficits 



expressed in the MFoR are almost invariant to the ABL stability conditions, thus in this respect 
confirming the conjecture on which the DWM modeling of non-neutral flow fields is based.  
 

 
Figure 25: Normalized wake deficits in the MFoR depicted for three different stability conditions. 

Turning to wake deficit dynamics, Table 8 shows the variance of the lateral wake center position for 
the investigated stability conditions. The lateral wake displacements are, in the context of DWM 
modeling, driven by the large scale lateral turbulent scales, and to facilitate direct comparisons with the 
inflow results given in Table 5, the results are normalized with respect to displacement variance 
associated with neutral conditions.    

Table 8: Variance of the lateral wake center position normalized with variance of the lateral 
wake center position associated with neutral conditions. 

Downstream 
distance 

Very 
unstable 

Unstable Near 
neutral- 
unstable 

Neutral Near 
neutral- 
stable 

Stable Very 
stable 

3D 1,11 1,22 1,26 1,00 0,70 0,81 0,75 
4D 1,09 1,36 1,10 1,00 0,59 0,57 0,49 
5D 1,04 1,40 1,02 1,00 0,61 0,54 0,40 

Qualitatively, also these results confirm the classic DWM conjecture stating that the wake meandering 
dynamics is driven by large scale turbulence structures, which in turn is highly dependent on ABL 
stability conditions. Although differences exists among values associated with specific stability classes, 
a quantitative comparison of the results in Table 5 (i.e. mean wind bin 6-7m/s) and Table 8 shows in 
addition that there is a reasonable agreement between the range of “large” scale variance stability 
dependence and the range of wake center lateral dynamics variance stability dependence, respectively, 
especially considering the fact that these results originate from not identical 10-minute recordings. 



In conclusion, we have demonstrated that there is experimental evidence for a significant impact from 
atmospheric stability on wake affected flow fields in wind farms, and more explicitly justified the 
fundamental wake stability conjecture stating that, in the context of DWM modeling, ABL stability 
impacts only the “large” scale turbulence scales within the meandering regime, whereas the “small” 
scale turbulence regime responsible for wake deficit expansion and attenuation in the MFoR can be 
assumed invariant with respect to ABL stability conditions. 

3.4 LES investigation of the generalized spectral tensor capability 
The usual approach when doing LES of the ABL over flat terrain is to use a wall law model in the near 
ground region and letting the flow be driven by a prescribed forcing (pressure gradient or Coriolis 
force). Stratification is typically taken into account by prescribing the temperature or heat flux at the 
ground, while buoyancy effects are accounted for by solving a transport equation for temperature. 
Normally, periodic boundary conditions are applied to the inlet and outlet of the domain and the 
simulation is set to run long enough for the generated turbulence to be fully developed and horizontally 
homogeneous.   
This type of LES is generally considered to be the most accurate numerical representation of the ABL 
over flat terrain that can be achieved today. Its main disadvantage is that it is very computationally 
demanding, but in connection with simulating stratified ABL also that the degree of stability (which 
changes in time) is not known a priori.  The latter issue makes it difficult to simulate cases with specific 
stability conditions and thereby to investigate the influence of stability on e.g. wind turbine wakes.  
A simpler and less computationally demanding LES approach is to superimpose synthetic turbulence 
on to a given mean flow [45]. Since this method uses volume forces to prescribe the ABL flow, we will 
in the following refer to it as the forced boundary layer (FBL) method. The FBL methodology has been 
used widely in connection with simulating wind turbines operating in the turbulent ABL, and generally 
good agreement have been documented between measurements and simulations [46],[47]. In all of 
these works the turbulent fluctuations are generated using the turbulence generator of Mann [9], which 
can produce turbulence with same spectral characteristics as in the neutrally stratified ABL. Recently, 
Chougule et al. [11],[13] extended the model of Mann to allow for modeling different stratification. 
Machefaux et al. [5] used this modified turbulence model together with the FBL methodology to 
simulate a wind turbine operating in differently stratified ABL. In this work the buoyancy was 
accounted for by solving a transport equation for temperature and prescribing an initial temperature 
profile. The advantage of the FBL approach is that inflow characteristics, similar to those observed in 
measurements, in principle easily can be generated, and thereby a one-to-one comparison can be made 
between simulations and measurements. In the work of Machefaux et al. [5] a comparison of measured 
and simulated wake characteristics were made, and an overall fair agreement was found. The main 
differences were observed in the near wake and in the near ground region due to inaccurate modeling 
of the nacelle and the influence of the ground. The inadequacy of the near ground treatment is expected 
to be particularly significant when using the FBL method for modeling a stratified ABL, because the 
heat flux is not modeled. Thus, while the FBL have shown rather accurate for a neutrally stratified 
ABL, it still needs validation in non-neutral conditions.   
The objective of this section is therefore to further validate the FBL method with standard LES of a 
non-neutral ABL. To do this a standard LES model has been implemented in the in-house Navier 
Stokes code EllipSys3D [48],[49],[50] as described in the next sections. As part of this work the 



capability of the method of Chougule et al. [36],[38] in reproducing non-neutral turbulence will also be 
verified. 

3.4.1 Governing equations 
The governing equations for the LES are the spatially filtered Navier-Stokes equations  
 𝜕𝜌𝑢𝑗

𝜕𝑥𝑗
= 0 (3.4.1) 
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= 𝑓𝑒𝑥𝑡 (3.4.1) 

where xi  (i={1,2,3}) refers to the longitudinal, lateral and vertical direction, respectively, ui is the 
spatially filtered velocity in the i-direction, p is the pressure, fext represents the external volume forces 
and the shear stress is given by 
 

𝜏𝑖𝑗 = (𝜇 + 𝜇𝑡)�
𝜕𝑢𝑖
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where µt is the turbulent eddy viscosity. 
Thermal stratification and Coriolis effects (and other external forces) are included via the source term 
on the right hand side of the momentum equations: 
 𝑓𝑒𝑥𝑡 = 𝑔𝑖(𝜌 − 𝜌0) + 𝜖𝑖3𝑘𝑓𝑐𝜌𝑢𝑘 + 𝑓𝑣𝑜𝑙 (3.4.3) 
Here gi is the gravitational acceleration, ρ0 is a reference density, ε is the alternating tensor and 
fc=2Ωsinλ is the Coriolis parameter, with Ω and λ being the earth’s rotation rate and latitude, 
respectively. The final term, fvol, represent other external forces such as e.g. wind turbine forces. 
Buoyancy effects are included by solving an equation for potential temperature: 
 𝜕𝜌𝜃

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝜃
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Here the heat flux is given by 
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 (3.4.5) 

where σθ is the turbulent Prandtl number. Density variations due to variations in pressure are assumed 
small, which means that the flow can be treated as incompressible and that density is not a function of 
pressure as required in the Boussinesq approximation. The density is linked to the temperature via the 
ideal gas law: 
 

𝜌 =
𝑃∞ 𝑀
𝑅𝑇

 (3.4.6) 

where M is the molar mass, P∞ is the background pressure and R is the universal gas constant.  
 



3.4.2 Sub-filter model 
In order to close the governing equations an equation for the turbulent eddy viscosity is need. In the 
present work we use the Smagorinsky model, which yields:  
 

𝜇𝑡 = 𝜌(𝐶𝑠Δ)2�2𝑆𝑖𝑗𝑆𝑖𝑗�
1/2 (3.4.7) 

where Cs=0.1 is a model parameter, Δ =( ΔxΔyΔz) 1/3 is the filter length scale and 
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3.4.3 Boundary conditions 
The boundary condition at the ground are defined from wall models using the Monin-Obukhov 
similarity theory (MOST), which is approximately valid for the atmospheric surface layer over flat 
terrain. According to MOST we have: 
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Here and overbar indicates horizontal averaging, κ is the von Karman constant, 𝑢∗ is the friction 
velocity, z0 is the roughness length, L is the Monin-Obukhov length and  
 

𝜃∗ =
𝜃0𝑢∗2

𝜅𝑔𝐿
 (3.4.11) 

where θ0 is the temperature at the ground, which is assumed known. The functions ψm and ψh are 
empirical functions, which depend on the atmospheric stability. In the present work they are defined as 
[51]: 
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where 
 Φ𝑚 = (1 − 16𝜁)−0.25 (3.4.14) 
 Φℎ = 𝜎𝜃(1 − 16𝜁)−0.5 (3.4.15) 

In practice the boundary conditions are determined by first determining 𝑢�, and 𝜃̅ in the first cell above 
ground and then use equations (3.4.10) - (3.4.12) to determine 𝑢∗and 𝜃∗ and L. Having determined 
𝑢∗and 𝜃∗ the wall shear stress and heat flux can be determined as 



 𝜏𝑤 = 𝜌𝑢∗2 (3.4.16) 
 𝑞ℎ = 𝜌𝑢∗𝜃∗ (3.4.17) 
which then replaces τij and qj in equations (3.4.2) and (3.4.5). 

3.4.4 Numerical setup 
The GABLS [52] inter-comparison setup of a diurnal cycle is used as a basis for the present LES 
simulation. This simulation assumes a constant geostrophic wind of Ug = -3 m/s and Vg = -9 m/s, a 
Coriolis parameter of fc = 8.87∙10-5s-1 and a uniform roughness height of z0 = 0.03m. The temporal 
variation of the surface temperature is shown in Fig.26  and is a simplified fit to observations. The 
initial temperature profile is as described by Svensson et al. [52]. 

 
Figure 26: Temporal variation of ground temperature. 

 
The simulations are carried out in a Cartesian grid with a uniform spacing of Δx = Δy = Δz = 12.5m. 
The dimensions of the grid are Lx = Ly = 2Lz = 4000m. The lower boundary is a wall, where the wall 
stress and heat flux is determined from Monin-Obukhov theory as described above. Symmetry 
conditions are applied at the upper boundary, while cyclic conditions are applied on all vertical 
boundaries. The time step in the simulations is set to Δt = 0.75s. In order to build up turbulence, a full 
diurnal cycle is simulated before the turbulence characteristics are analyzed.  

3.4.5 Results 
Fig. 27 shows the computed friction velocity ( 𝑢∗), heat flux (qh) and inverse Monin-Obukhov length 
(1/L) as a function of time during the day. In day time the ground is warmer than the air above and the 
ABL is unstable, whereas the opposite is true during night.  As a consequence L and qh are negative 
during day and positive during night. Furthermore, it is seen that the friction velocity as expected is 
high during unstable conditions and low in stable conditions. Neutral conditions are seen to occur only 
as a short transitional phase between stable and unstable conditions.  
 



 
Figure 27: Friction velocity, wall heat flux and inverse Monin-Obukhov length as a 

function of time of day. 
 
Fig. 28 shows profiles of the velocity and temperature at 17.30 and 00.30, respectively. The 
corresponding plots of the velocity variance are shown in Fig. 29. The two shown cases represent very 
unstable and very stable conditions, respectively.  In both cases the profiles are computed by averaging 
horizontally in space and over approximately 10 minutes in time. As expected, the flow is characterized 
by a strong shear and low turbulence in stable conditions, whereas the opposite is true in unstable 
conditions. The vertical variation of the variance in the unstable case is qualitatively in agreement with 
measurements presented in the book of Wyngaard [53]. The variance profiles in the stable case look 
less convincing, which is most likely due to the poor grid resolution. 

 

a) b)  

Figure 28: Velocity and temperature profiles at a) 17.30 and b) 00.30. 
 



a) b)  

Figure 29: Velocity variance profiles at a) 17.30 and b) 00.30. 
 
Fig. 30 shows the spectral characteristics of each velocity component at approximately 130 m above 
ground at the same time of day as the profiles shown in Fig. 28 and Fig. 29 were extracted.  The -5/3 
slope, which is characteristic of the inertial sub-range, is also shown in the plot. The subscript “h” 
indicates that it is the velocity components relative to the mean flow direction at the current height. 
Hence uh is in the along the mean flow direction at h = 130 m. 
 

a) b)  

Figure 30: 1D velocity spectra at a) 17.30 and at b) 00.30. The cyan line indicates the 
inertial sub-range -5/3 slope. 

In the unstable case the spectra of each component are very similar indicating that the flow is rather 
isotropic at the extracted height, which is as expected from Fig. 29. However, this figure also shows 
that the flow below and above the height at which the spectra are evaluated is far from isotropic.  At a 
first glance the inertial sub-range seems to be rather well resolved in the unstable case, when 
considering the range of wave numbers from approximately 0.003 to 0.05. However, in the range from 
0.008 to 0.02 the slope of the spectra is clearly lower than the expected -5/3. Thus, the spectra only 
have a slope of -5/3 in the wave number range between 0.02 and 0.05. The rather limited range of the 
inertial sub-range is most likely due to insufficient grid resolution and a too simple sub-grid model, 
which apparently cannot extract sufficient energy from the resolved flow.    
In the stable case the energy is clearly much lower than in the unstable case. It is clear that the inertial 
sub-range is not well resolved in this case even though it could seem like the spectra have a -5/3 slope 



at the lowest wave numbers. The reason for the poor resolution of the inertial sub-range in the stable 
case is that the turbulence scales are small and therefore the rather coarse grid resolution does not allow 
for resolving the inertial sub-range well. The “bump” at wave numbers around 0.02-0.03 is unexpected 
and is probably a result of a too simple sub-grid-scale model.  

3.4.6 Kinematic turbulence modeling 
In this section we will use the method of Chougule et al. [11],[13] – as described in section 3.2 – to 
reproduce the turbulence generated by the LES described above.  This method is, as previously 
described, an extension of the spectral tensor model by Mann [9] by allowing for modeling atmospheric 
stratification. To recap the model is based on 5 parameters: a parameter linking mean wind shear 
magnitude with eddy lifetime (Γ), the turbulence length scale (L), the viscous dissipation of turbulent 
kinetic energy (αε2/3), the gradient Richardson number, Ri, and the rate of destruction of temperature 
variance (ηθ). The first 3 of these parameters are the same as used in the original work of Mann. The 5 
parameters are determined by fitting the model spectra to the spectra computed by the LES. The result 
of this exercise is shown in Fig. 31 and Fig. 32. As seen the fit is far from perfect, especially in the 
stable case. This result is contrary to the fitting of the generalized spectral tensor to the full-scale HATS 
data in section 3.2.3. The poor agreement is partly due to the inability of the spectral tensor model to 
handle extreme stratification but also due to the limited resolution of the LES, which are incapable of 
resolving the inertial sub-range properly. 

 
Figure 31: Spectral fit at time 17.30. The dashed lines are LES and full lines the fit. 

 

 
Figure 32: Spectral fit at time 00.30. The dashed lines are LES and full lines the fit. 

 



3.4.7 Simulation of wind turbine wake at different atmospheric stratification 
In this section we simulate the wake characteristics of the DTU 10WM wind turbine operating in an 
unstable and stable ABL, respectively. The simulations are carried out using two different approaches: 
1) using precursor generated LES turbulence as described above and 2) using the kinematic approach 
where turbulence is generated using the spectral model of Chougule et al. and inserting it in a cross 
section upstream of the turbine. The wind turbine is simulated using an actuator disk method [54]. 
In the first approach we simply restart the LES simulation described above but with an AD inserted in 
the center of the domain at a height of 132 m. The AD is aligned with the mean wind direction at hub 
height and is operating at a constant rotational speed and pitch. The use of periodic boundary 
conditions is not a problem in this case, because the domain is very large, and because the wind 
direction is between 30 and 45 degrees, and therefore the wake is completely dissipated before it 
intersects the turbine again. 
In the second approach a new computational domain was generated, which had the same dimensions as 
in the first approach but used fewer grid points. In the region around and downstream of the turbine the 
grid cells were cubic with a side length of 12.5m (just as in the grid used in the first approach). This 
equidistant region extended from 500m upstream to 1500m downstream of the turbine, and its height 
was 1250m. Outside of the equidistant region, grid points were stretched away towards the outer 
boundaries. The grid had (160, 160, 128) points in the x, y and z-direction, where x is the flow direction 
at hub height, y is the lateral direction and z is the vertical direction. The velocity and temperature at 
the inlet was specified in accordance with the mean profiles from the LES simulation (except above 
1000m where a constant temperature was applied). The remaining boundary conditions were symmetry 
at the wall, periodic on the sides and Neumann at the outlet. The turbine rotor center was located at 
(1500m, 2000m, 132m), and its axis was aligned with the flow direction (x). The synthetically 
generated turbulent fluctuations are inserted in a cross-section located 500m upstream of the rotor. It 
turned out that the use of Dirichlet (at the inlet) and Neumann conditions necessitated a change in the 
scheme of the convective terms. Therefore, instead of using a pure CDS4 scheme, these simulations 
were carried out using a hybrid scheme that blends CDS4 and QUICK.  
Fig. 33 and Fig. 34 show snapshots of the streamwise velocity at hub height using LES and FBL, 
respectively. 

a) b)  

Figure 33: Snapshot of velocity using LES at a) 17.30 and b) 00.30. 
 



a) b)  

Figure 34: Snapshot of velocity using LES at a) 17.30 and b) 00.30. 

The overall level is in good agreement, but it is clear that standard LES resolves smaller scales than 
when using FBL. The reason for this is due to the shift in convective scheme and the inaccurate 
spectral fit. 
In order to evaluate the level of wake meandering, the dynamics of the wake center is computed. The 
wake center position at each downstream cross-section is determined from an optimization algorithm 
where a 1D Gaussian profile is fitted to the unsteady wake at hub height. Fig. 35 shows the standard 
deviation of the lateral position of the wake center as a function of downstream position computed from 
the LES and FBL simulations, respectively. The standard deviations are higher in the LES than the 
FBL, and in the unstable case the slope is also markedly larger. This is as expected from Fig. 31, where 
it is clear that there is significantly more energy on the large scales in the LES than in the FBL 
simulations. 

a) b)  

Figure 35: Standard deviation of wake center at a) 17.30 and b) 00.30. 
 

3.4.8 Conclusions 
A wind turbine operating in the ABL under different stratifications has been modeled using two 
different LES approaches. The first is a standard LES, in which the inflow is generated from a 
precursor simulation, with periodic boundary conditions whereas the second is the FBL method where 
synthetic turbulence is superimposed on to the mean flow in a cross-section upstream of the rotor.  In 
the latter case the turbulence was generated using the method of Chogule et al. [11],[13]. It was shown 



this method could not reproduce turbulence with the same spectral characteristics as in the LES. The 
reason for this was a mix of using a too coarse grid in the LES and the difficulty of the model of 
Chogule et al. [11],[13] in handling very unstable conditions. As a consequence of the differences in 
the turbulence, the dynamics of the wake predicted by the two approaches was also quite different. The 
differences could however be explained as coming mainly from the differences in energy on the large 
scales.  
  



4 Wind farm feed-back on large scale turbulence structures 
With the wake meandering process in the DWM model being defined by the large scale turbulence 
structures in the ABL, it is obviously important to determine if the sole presence of a WF in the ABL 
impacts the characteristics of such large scale structures compared to ambient undisturbed conditions – 
i.e. in other words to determine if a feed-back process exists between the presence of a WF and the 
large scale turbulence structure characteristics inside the WF, where the DWM model is to be applied 
to simulate the non-stationary wake affected WF flow field, and further to assess if, in this regard, there 
is any impact of ABL stability conditions. 
To approach this research question, a large data set has been analyzed with the purpose of quantifying 
the impact of atmospheric conditions on turbulence structure and intensity before and after a full-scale 
offshore wind farm, and, in doing so, turbulence spectra and turbulence intensities have been 
investigated. As a by-product, it was further decided to use this high frequency data set to validate a 
study initiated by DONG Energy in the TOPFARM project [55]. It is thus aimed to investigate if the 
wind farm impacts the large scale turbulence, and if the wake can be regarded as a passive tracer with 
its transversal movements dictated by the wind’s large scale cross-turbulence. The research issue is 
summarized in Fig. 36. 

 
Figure 36: Schematic illustration of the DWM model hypothesis to be investigated.  

In the analysis, we will refer to the nomenclature illustrated in Fig. 37, with U being the mean wind 
speed, and (u,v,w) being turbulence components in the longitudinal, lateral and vertical directions, 
respectively. Further, we will refer to F11 as the auto spectrum of u, F22 as the auto spectrum of v and 
F33 as the auto spectrum of w. 



 
 

Figure 37: Nomenclature. 

4.1 Measurement setup 
To investigate the above described task, full-scale experimental data have been compared up- and 
down-stream of a large offshore wind farm. The experimental data was recorded at Nysted Offshore 
Windfarm – a park consisting of 72 BONUS 2.3 MW turbines located 10 km from Gedser in 
southeastern Denmark. The park data, layout and positions of the WT’s as well as the meteorology 
masts are shown in Fig. 38 below.  

 
Figure 38: Layout of Nysted Offshore Wind Farm. The two masts used in this work, M2 and M3, 

are highlighted. Park key data is given in the left hand panel. 

The two encircled masts, Mast 2 (M2) and Mast 3 (M3), are the only measurement devices used in the 
present work; the masts instrumentation and recording systems are identical. The measurement sensors 
are two sonic anemometers of the type Metek USA-1, both mounted at a height of 63m. These 
anemometers record all three components of the wind vector with a resolution of 0.1m/s at a sampling 
rate of 1Hz. A drawing of the mast top as well as a picture of a mast bottom is shown in Fig. 39. 
 



 

 
Figure 39: Overview of mast top layout (left) and picture of the mast bottom (right). Boom with 
the sonic anemometer is indicated with a red circle. The mast booms are pointing toward North. 

4.2 Turbulence spectra 
Approximately 18 months of experimental data were simultaneously available at M2 and M3. The data 
was partitioned into segments of 3000 seconds each. This partition has been performed in order to have 
enough point in the low frequency part and thus to be able to investigate the spectral behavior in this 
frequency regime. The segments having mean wind directions pointing within ±7° of the direction from 
M2 to M3 are denoted as “Western Winds”, whereas those segments with mean wind directions 
pointing within ±7° of the direction from M3 to M2 are denoted “Eastern Winds”. All data outside 
these two wind direction bins have been discarded. 

4.2.1 Analysis approach 
The analysis of the data includes the following four steps: 

1. Selection of the 3000s long up-wind segments one by one; 
2. Fourier transformation of corresponding segments measured up- and down-stream, where 

Haning windowing has been applied; 
3. The resulting power spectra, S(f), as a function of the frequency, f, have been combined in a 

weighted average; and 
4. Finally, log[S(f)] has been plotted as a function of f. 

4.2.2 Spectra of lateral and vertical turbulence components 
Only the v and w turbulence component have been studied, because the DWM wake meandering 
process are completely defined by these, and in the following each plot will present relevant turbulence 
spectra both up- and down-stream of the WF in question.  



Fig. 40 shows the F22 spectra for all wind speeds, which corresponds to 1062 segments for the Western 
wind direction bin and 342 segments for the Eastern wind direction bin. The difference between up- 
and downstream spectra for Eastern wind directions is more significant than for Western wind 
directions, which is in accordance with the location of the downstream meteorological mast (i.e. M2 for 
western wind directions and M3 for eastern wind directions). The peak around f = 0.5Hz corresponds to 
the natural frequency of the meteorological mast structure and is consequently disregarded in the 
analysis. 

 
Figure 40: Up- and downstream F22 spectra for both Eastern and Western wind directions for all 

wind speeds. 
As for the low frequency part of the spectra, we observe that below a certain frequency the up- and 
downstream spectra follow the same trends and contain approximately the same amount of energy. 
This suggests that the wind park does not impact the large scale turbulence corresponding to such low 
frequencies. The same observation is true for the F33 spectra, which is shown in Fig. 41. 
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Figure 41: F33 spectra up and down stream for all wind speeds. 

4.2.3 Wind speed binning and merging frequency  
We now look at the impact from the wind speed on the F22 and F33 spectra, thus investigating if the 
merging frequency is depending on wind speed. However, the cost is that by binning the wind speed, 
we reduce the number of available segments for spectral smoothening, which is illustrated in Table 9. 
This in turn increases the noise on the obtained spectra and consequently increases the uncertainty on 
the merging frequency determination for some spectra. 

Table 9: Available segments for each wind speed bin. 

- Eastern Winds Western Winds 
All Wind Speeds 342 1062 

0-5 m/s 61 69 
5-7 m/s 64 95 
7-9 m/s 81 170 
9-11 m/s 88 185 
11-13 m/s 26 202 
13-15 m/s 21 170 

WS>15 m/s 1 171 
 
Fig. 42 shows F22 and F33 for wind speeds between 13m/s and 15m/s for eastern and western wind 
directions. These figures illustrate the impact of the number of available segments on the spectral noise 
level and thereby on the merging frequency determination. 
 

10-4 10-3 10-2 10-1 100
10-2

10-1

100

101

102

f (Hz)

F 33
 (m

2 .
s-2

/H
z)

Western winds - Vertical part

 

 

10-4 10-3 10-2 10-1 100
10-2

10-1

100

101

102

f (Hz)

Eastern winds - Vertical part

Up-stream
Down-stream



 

 
Figure 42: F22 and F33 for wind speeds between 11 and 13 m/s. 
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Figure 43: Merging frequency as a function of wind speed for F22 and F33 for Eastern and 

Western wind directions. 

Fig. 43 shows no clear dependency of the merging frequency on wind speeds, even though F33 for 
western wind directions seems to decrease when the wind speed increases. In summary, we observe 
that all values remains approximately constant around f = 0.005 Hz, which is in accordance with 
previous studies on this topic [55],[56]. The large scale turbulence, corresponding to frequencies below 
approximately 0.005Hz, is therefore not impacted by the presence of the WF. 

4.2.4 Longitudinal wind speed fluctuations  
To investigate the present recommended practice in the IEC code [8] for simulation of wake affected 
loads, we finally compare the WF affected turbulence intensity with the analogue undisturbed ambient 
turbulence intensity. Fig. 44 shows measured F11 spectra associated with eastern and western wind 
directions, respectively. 
Using the effective turbulence intensity approach from the IEC code [8], we conventionally simulate 
the incoming turbulence field to a WT operating in WF conditions as a turbulence field with an 
intensity equal to a code specified coefficient times the ambient undisturbed turbulence intensity. 
Consequently, we here investigate the potential of this approach by analyzing how good this 
approximation compares with measurements. From Fig. 44 the coefficients 1.4 and 2.4 have been 
estimated for the western and eastern wind direction bins, respectively. 
For the eastern wind direction bin, the generated spectrum does not capture the peak at low frequencies 
and starts to fit poorly from f = 0.1Hz and downwards. This is most likely linked to the fact, that not 
only turbulence intensity but also turbulence structure changes in wake affected flow fields. For the 
western wind direction bin, both simulated and measured spectra fit well. With mast M3 being located 
at two row-to-row distances from the WF, the WF affected flow field recorded at this position has 
recovered to a larger extend than the WF affected flow field recorded at mast M2, which is located only 
one row-to-row distance from the WF. 
 

0 5 10 15 20 25
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
Merging frequency

Wind Speed [m/s]

Fr
eq

ue
nc

y 
[H

z]

 

 
Western winds - F22

Western winds - F33
Eastern winds - F22

Eastern winds - F33



 
Figure 44: Measured and simulated F11 spectra for eastern and western wind directions. 

Plotting the spectra shown in Fig. 44 for different stability classes showed that the ABL stability 
condition does not have any significant impact. It will, however, be of interest to evaluate the non-
captured WF affected turbulence intensity, corresponding to the peak below f = 0.1Hz, to assess the 
consequences for the code specified effective turbulence intensity approach. 

4.3 Distribution of ABL stability at the Nysted site 
Referring to the ABL stability classification defined in Table 1, Fig. 45 shows the distribution of 
atmospheric stability conditions at Nysted for both the eastern and western wind direction bin. As these 
distributions are intended also to support the analysis of the resulting turbulence intensities, the wind 
direction filtering has been kept to 97±30° for eastern winds (recorded at mast M3) and 277±30° for 
western winds (recorded at mast M2). However, a filtering corresponding 97±90° and 277±90° would 
provide a more accurate characterization of the site, but this is accordingly not shown here. 
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Figure 45: Stability class distribution at Nysted for 2004-2007. 

For eastern wind directions a stable atmosphere seems to be more frequent at Nysted. However, no 
clear trend appears. Strong winds occur most often for westerly wind directions, which explain the 
increased likelihood of neutral stability conditions in such cases. These results are in accordance with 
the results obtained by Lange [57].   
Fig. 46 shows the dependency of the ABL stability distribution on wind speed. 
 



 
Figure 46: Evolution of stability distribution with wind speeds for western winds. 

Neutral conditions become more and more dominant as the wind speed increases, but no clear trend is, 
however, observed regarding stable and unstable classes. 

4.3.1 Turbulence intensity under different ABL stability conditions   
As mentioned in the previous section, the eastern wind direction bin is here defined as 97±30 deg and 
the western wind direction bin as 277±30 deg. This bin size was selected to have enough data to plot 
curves with sufficient statistical significance. For the same purpose, the stability clases “Nearly Stable”, 
“Stable” and “Very Stable” have been merged into only one “Stable” class. The same was done for the 
unstable classes defined in Table 1.  
For different stability classes, Fig. 47 and Fig. 48 shows the turbulence intensity plotted against wind 
speed for the undisturbed ambient situation as well as for the WF influenced situation. 
 



 
Figure 47: Turbulence intensities upstream (markers) and downstream (dashed lines) the WF for 

merged unstable; neutral; and merged stable classes for the western wind direction bin. 

 
Figure 48: Turbulence intensities upstream (markers) and downstream (dashed lines) the WF for 

merged unstable; neutral; and merged stable classes for the eastern wind direction bin. 

 



For eastern wind directions there is a clear difference between the three stability classes and in 
particular between the stable class and the two others. Western wind directions show a less significant 
difference between the stability classes, even though unstable classes generally correspond to higher 
turbulence intensity values. It is interesting to notice, that the WF seems to harmonize the turbulence 
intensity levels through the classes. This is clearly observed for western wind directions. It seems as if 
the turbulence induced by the WF in stable conditions balanced the increased ambient turbulence 
corresponding to the unstable case. 
In order to understand the limited difference between turbulence intensities associated with specific 
stability classes (most pronounced for the western wind direction bin), the turbulence intensity level as 
a function of the stability class has been investigated in analogy with the investigation by Hansen et. al. 
[17]. 

 
Figure 49: Turbulence intensity as a function of the atmospheric condition at different wind 

speeds. 

Fig. 49 shows the variation of turbulence intensity with the Table 1 stability classes for different wind 
speeds. The curves associated with the eastern wind direction bin relates to mast M3, whereas the 
curves associated with the western wind direction bin relates to mast M2. For both direction bins, the 
turbulence intensity is not particularly wind speed dependant for classes from “very unstable” (i.e. cL = 
-3) to “nearly stable” (i.e. cL = 1) and more or less follow the same trends with similar intensity values. 
However for “stable” and “very stable” conditions (i.e. cL = 2 and cL = 3) we see a clear dependence 
on wind speed with very low turbulence intensity levels for high wind speeds. 
This suggests that the classic ABL stability classification in respectively “stable”, “neutral”, and 
“unstable” conditions may not be appropriated to load related turbulence intensity considerations. 
Therefore, we take a different perspective and look at the same plot, but now dividing the atmospheric 
conditions, defined in Table 1, according to the following new classification: cL<1; cL=2; and cL=3. 
Fig. 50 shows plots corresponding to this new classification. 



 

 
Figure 50: Turbulence intensities upstream (markers) and downstream (dashed lines) the WF for 

for cL<1, for cL=2, and for cL=3, respectively. 

For western wind directions, the turbulence intensity differences between the new classes have 
significantly increased. The curve for cL<1 displays the same values and trends as the “unstable” curve 



obtained for the classic (“unstable”, ”neutral”, ”stable”) classification. We actually overestimated the 
turbulence intensity in the “very stable” case by treating it the same way as the “stable” and the “nearly 
“stable” cases. 
Again, the WF tends to harmonize the turbulence intensity level for the various atmospheric stability 
conditions. For eastern wind directions, the cL=2 (“stable”) and cL=3 (“very stable”) classes tend to 
more or less follow the same trends with similar intensity values. This actually shows that for the 
eastern winds the "classic" classification is of interest. 
Even though the very modest dependence of turbulence intensity with ABL stability condition within 
the western wind direction bin got a bit clarified thanks to this new classification, it is still unclear, why 
we do not have the same behavior for eastern and western wind directions. Hansen et. al. [19] showed 
strongly different behavior for eastern and western wind directions as well. However, their study is 
based on Horns Rev measurements, where eastern wind directions are obviously influenced by the 
shore. As for the present study, it is not clear if shore is more east or west of the WF (cf. Fig. 51), and it 
should be noted that the data have been recorded before Rødsand 2 was established. 
 

 
Figure 51: Geographic location of the Nysted WF. 

  



Fig. 52 and Fig. 53 show the dependence of turbulence intensity with wind direction at M2 and M3. 

 
Figure 52: Directional turbulence at M2. 

 
Figure 53: Directional turbulence at M3. 



On mast M3 some mast effect on the turbulence measurements are observed for northern directions, but 
this can obviously not explain effects observed for eastern and western wind directions. Similar mast 
effects were not observed on M2.  

4.4 Summary of findings based on the full-scale Nysted data 
In summary, this study has quantified the impact of a WF on undisturbed ambient turbulence spectra. 
We found that the energy of the lateral and vertical turbulence components on frequency scales less 
than 0.005 Hz are not influences by the presence of a WF like the Nysted WF. Moreover, an analysis of 
spectra associated with the longitudinal turbulence component indicates, that the conventional code 
recommended approach to simulate wake affected turbulence fields might not be accurate. Further 
studies of WF turbulence intensity levels are, however, needed to fully clarify this issue. Finally, we 
observed, that the WF tends to harmonize the turbulence intensity levels among the stability classes.  
  



5 Influence from ABL stability on WF production and loading 
In this section we will demonstrate and verify the impact of various ABL stability conditions on wake 
dynamics, wake losses and turbine loading for two complete WF’s using the DWM modeling approach, 
which is recently included in the IEC code as a recommended practice for description of wake affected 
flow fields. For this purpose we will make use of full-scale data from the Dutch Egmond aan Zee WF 
[58] as well as from the Swedish Lillgrunden WF. We will moreover investigate the capability of 
stationary flow field modeling for WF production prediction.  

5.1 WF production 
Obviously, WF production prediction is a topic of utmost importance. WF production predictions are 
traditionally based on a stationary description of the WF flow field assuming neutral atmospheric 
stratification, which usually suffices. A large number of models within this model segment have been 
proposed ranging from simple engineering models to fairly complex CDF based models. Stationary 
CFD models adapt the RANS approach, with the turbulence closure typically being based on some 
variant of the Boussinesq approximation. 
To justify the use of stationary flow models for WF production prediction, as well as to validate the 
capability of the non-stationary DWM model for such predictions, we will in this section compare 
model production predictions with full-scale production data from the Egmond aan Zee WF [14]. The 
non-stationary DWM model is considered a medium-fidelity model, and as a representative for the 
stationary modelling approach we will use another medium-fidelity model – the Fuga CFD model [59]. 
Fuga is a linearized RANS type of CFD model based on a mixed spectral formulation, which makes it 
approximately one million times faster than a conventional RANS CFD model and at the same time 
circumvent the problem of numerical diffusion. A dedicated turbulence closure allows buoyancy 
effects to be approximated in a simple and efficient manner. 

5.1.1 Egmond aan Zee WF 
The Egmond Aan Zee WF is located outside the coast of the Netherlands, and it consists of 36 Vestas 
V90 3.0MW wind turbines installed on monopile foundations. The layout of the WF can be seen in 
Figure 54. 

  



  

 
Figure 54: Layout of the Egmond aan Zee WF. 

One meteorological mast is located at the site southwest of WT8, see Fig. 54, which is the dominant 
wind direction at the site. The wind speed and directions are measured at three heights 116m, 70m and 
21m, where 70m corresponds to the turbine hub height. The wind direction sensors are calibrated based 
on power measurements of WT21, where a (local) minimum of the power production is expected at 
196 deg. due to the layout of the wind farm. The calibration of the meteorological mast data is 
explained in details in [60], where an uncertainty level of 1.4 deg. on the final measured wind direction 
is concluded.  
Due to wake disturbances, the recordings from the meteorological mast can unfortunately not be used 
for all wind directions. In such cases, undisturbed ambient wind directions and wind speeds are derived 
on the basis of WT SCADA data from WT’s operating in free inflow conditions. 

5.1.2 Measurements 
The available set of measurements consists of approximately 6.000 10-minute average values. 
Although apparently being a large data set, it is somewhat limited considering that binning has to be 
performed in three dimensions – mean wind speed, mean wind direction and stability identifier. 
Therefore, quite crude bins have to be defined in order to secure a reasonable number of observations 
within each of these. 
This has lead to the following binning approach: 1) Mean wind speeds, referring to 10-minute means, 
are projected on three bins – [5;7]m/s, [7;9]m/s and [9;11]m/s; 2) Mean wind directions refer to a 
sliding window averaging procedure, in which the sliding window, extending ± 5 deg. from a particular 
mean wind direction, is advanced in steps of 1 deg. for the full polar (i.e. from 0 deg. to 360 deg.). In 
this way we obtain an acceptable wind direction resolution, however, on the cost of multiple re-use of 
data wind direction wise; and 3) The stability classes defined in Tabel 1 are collapsed into only three 
merged classes, with “unstable” stratification now consisting of the Table 1 set of stability classes {-3,-
2}, “neutral” stratification consisting of the Table 1 set of stability classes {-1,0,1}, and “stable” 
stratification consisting of the Table 1 set of stability classes {2,3}, respectively.  



Using the above defined data classification approach the stability distribution, conditioned on wind 
direction, can be determined mean wind speed wise as shown in Fig. 55, Fig. 56 and in Fig. 57.  

 
Figure 55: Distribution of stability conditions as function of wind direction for U ϵ [5;7]m/s.  

Blue refers to “stable”, green refers to “neutral”, and red refers to unstable”. 

 
Figure 56: Distribution of stability conditions as function of wind direction for U ϵ [7;9]m/s.  

Blue refers to “stable”, green refers to “neutral”, and red refers to unstable”. 

 
Figure 57: Distribution of stability conditions as function of wind direction for U ϵ [9;11]m/s. 

Blue refers to “stable”, green refers to “neutral”, and red refers to unstable”. 
 
 
 
 
It is evident that the stability condition, as expected, depends on upstream conditions (i.e. geographical 
direction and upstream fetch), and it is also noted that “neutral” stratification become more frequent 
with increasing wind speeds as also observed in section 4 for the Nysted data.  



5.1.3 Simulations 
For the three mean wind speed bins defined in section 5.1.2, the Egmond aan Zee WF production, 
covering the full wind direction polar (i.e. 0 deg. – 360 deg.), has been simulated using both the Fuga 
and the DWM approach. In both cases the median of the respective mean wind speed bins has defined 
the simulation mean wind speed. In Fuga, non-neutral ABL conditions are accounted for by linking the 
applied eddy viscosity closure to M-O length and height, whereas such conditions are accounted for in 
the DWM simulations by using turbulence fields originating from the “classic” Mann spectral tensor 
approximately adapted to the non-neutral conditions in question. 
As for the DWM approach, the simulations were performed with a modified version of HAWC2, in 
which only the aerodynamics of a rigid rotor was included, in order to reduce the computational time. 
Thus, the effect of structural dynamics on wake formation and WT production was neglected, but the 
reduced code still includes a full implementation of the WT controller. Representing rotors by actuator 
disc’s the WT structural dynamics is, of course, also neglected in the Fuga simulations. 
The computational loads are significantly different for the two codes. With a direction resolution of 2 
deg. the DWM simulations included 19440 10-minute aerodynamic rotor computations for each mean 
wind speed (i.e. 180×36×3 for 180 directions, 36 turbines and 3 stability classes), which equalize a 
computational load of approximately 24 hours on 20 processors. With a directional resolution of 1 deg. 
the Fuga computational setup included 1080 simulations (i.e. 360×3 360 directions and 3 stability 
classes) corresponding to a computational load less than 20 minutes on a standard PC.  

5.1.4 Results 
First WF production, aggregated over all wind stability conditions, will be investigated to consolidate 
the belief that stationary flow field models suffice for WF production predictions. Simulations covering 
the full 0 deg. –360 deg. polar for the 8m/s mean wind speed bin have been compared with 
measurements in Fig. 58.  

 
Figure 58: Egmond aan Zee WF production as function of mean wind direction. 

Comparing the two model predictions a close agreement is seen. The only notable difference is that the 
direction variability are slightly smaller for the DWM results than for the Fuga results, which indicates 
that the directional “smoothening” caused by the “wake meandering” in the DWM model in this case is 



larger than the directional “smoothening” resulting from the Fuga eddy viscosity closure. However, if 
we average the WF production over all wind direction, assuming a uniform wind direction probability 
density function, we obtain a very close agreement between the two model predictions. Fuga and 
DWM predict a WF production of 29.56MW and 29.26MW, respectively, which equivalence a relative 
difference of only 1%. 
Comparing simulations with measurements we see concordant power drops at wind directions 
corresponding to WF rows with 7D spacing (i.e. directions 139 deg. and 319 deg.) and WF rows with  
11D spacing (i.e. directions 50 deg. and 230 deg.), respectively. However, the simulated drops are more 
significant than their measured analog. Power drops attributed to WF rows with 13D spacing (i.e. wind 
direction 16 deg. and 196 deg.) spacing can also be seen in the simulations, where these is more unclear 
in the measurements. For the simulations we notice, as expected, a π-symmetry for WF row directions. 
This is only recognized in the measurements for the 7D spacing row, and the measurements are in 
general more scattered in such aspects than the simulations. The general picture is though largely the 
same for simulations and measurements. Averaging the measured WF production over all wind 
directions, again assuming a uniform wind direction, we obtain 29.30MW, which is remarkably close 
to the predicted values of 29.56MW and 29.26MW, respectively. 
The observed differences between simulations and measurements – e.g. differences in magnitudes of 
the 7D power drops – presumably relates to a multitude of reasons, among which the most important 
are believed to be:  

1) The WF flow field is not, as assumed in any of today’s micro-scale models, spatial 
homogeneous on a 10-minute scale, meaning that mean wind speeds and directions measured at 
one position in the WF differ from wind speeds and directions measured at another position 
within the WF. This effect is obviously increasing with the spatial scale of the WF, and with an 
extent of up to 7km the present WF is expected to be subjected to such effects. The impact from 
these spatial in-homogeneities on WF production arises from the fact, that the production of a 
WT is highly sensitive to the exact type of its wake operation (i.e. full wake or exact degree of 
partial wake operation). For spatial in-homogeneous WF flow fields no such thing as entire WF 
rows perfectly aligned in a wind direction context exists, whereby measured WF power drops at 
WF row directions are expected to be alleviated compared to their simulated analogue; 
 2) For a given mean wind speed and a given mean wind direction, the simulations assume 
stationary stochastic turbulence processes, whereas real life turbulence is non-stationary. For a 
given time span (e.g. 10 minutes), the non-stationary part introduces wind speed and direction 
trends at a given measuring point which, due to the inherent in-homogeneous character of WF 
flow fields, will vary within the WF; and  
3) The turbulence modelling associated with the DWM approach is based on kinematic 
turbulence models, dedicated to describe the initial sub-range of the turbulence, and therefore 
not a priory expected to be able to account for meso-scale effects on wake meandering. This 
means that the energy on the large scales dictating the meandering process might be 
underestimated, which in turn will result in an underestimation of the meandering smoothening 
effect.   

In an attempt to partly compensate for wind speed trends within bin’s we will in the following present 
measured production measures relative to a power reference associated with the time span in focus. To 
further reduce the potential impact of spatial variability, we will define this power reference as a power 



production mean associated with a number of WT’s operating in free ambient inflow conditions for a 
given wind direction. 
The WF production, normalized as described above, is shown in Fig. 59 for the 10m/s mean wind 
speed bin. 

 
Figure 59: Normalized Egmond aan Zee WF production as function of mean wind direction. 

As seen, the directional variability of the measurements seems somewhat reduced, but the power drops 
in the 7D row case is still more pronounced in the simulations than in the measurements.  
We now turn to the impact of ABL stability on WF production. For this purpose, we have compared 
simulated and measured WF productions for the three collapsed ABL stability classes. For the 10m/s 
bin, the normalized WF production versus direction is shown in Fig. 60 for “unstable” ABL conditions. 

 
Figure 60: Normalized WF production versus mean wind direction for unstable ABL conditions. 
The two model predictions are now slightly offset, with Fuga matching the 7D power drop at 139 deg., 
and DWM matching the 7D power drop at 319 deg., respectively. Due to limitations in the available 
data set not all wind directions are represented, and it is difficult to judge which of the two model 
prediction is the most accurate. 

For the “neutral” ABL stability case, the normalized WF production versus direction is illustrated in 
Fig. 61 for the 10m/s bin. 



 
Figure 61: Normalized WF production versus mean wind direction for neutral ABL conditions. 
No significant offset between model predictions is observed, but Fuga predicts slightly more directional 
variability than the DWM model. This is especially pronounced at the 7D power drops, where the 
DWM model predicts the measured power drops at 139 deg. and at 319 deg. better than the Fuga 
model. Both models underestimate the production variability in the direction regimes outside the 7D-
directions, and again the model predicted π-symmetry is only approximately recovered in the measured 
data due to the reasons mentioned previously.   
Finally, the “stable” ABL stability case is illustrated in Fig. 62, which shows the normalized WF 
production versus direction for the 10m/s bin. 

  
Figure 62: Normalized WF production versus mean wind direction for stable ABL conditions. 
The directional variability predicted by Fuga is slightly increased when comparing with the “neutral” 
case, which is also intuitively expected due to less mixing and thus “sharper” wakes. This is also the 
case for the DWM predictions, although to a much lesser extent. The power drop at 139 deg. is better 
predicted by the DWM model, but the production variability in the in the direction regime extending 
from 150 deg. to 290 deg. is better predicted by Fuga. 
In conclusion, a high degree of agreement between two very different simulation approaches is 
observed, both giving aggregated WF production estimates surprisingly closed to the measured value. 



5.2 WF loading 
During the project, Siemens Wind Power A/S kindly made a set of high-quality WT load measurement 
from the Lillgrunden WF available for detailed load analyses. These measurements are probably one of 
the most comprehensive sets of wake affected wind turbine load measurements ever recorded. The 
measurement period extends from 2008-06-03 to 2013-03-19 – i.e. over a period of almost 5 years. 

5.2.1 Lillgrunden WF 
The Lillgrund WF consists of 48 Siemens SWT-2.3-93 WT’s, and one of these (C-8) is instrumented 
with strain gauges resolving blade, main shaft and tower loads, respectively. The layout of the WF is 
shown in Fig. 63. 

 
Figure 63: Layout of the Lillgrunden WF with the instrumented WT C-8 marked. Distances are 

non-dimensioned with the rotor diameter. 

Whereas the Egmond aan Zee WF, investigated in section 5.1, is characterized by a “conventional” WT 
inter spacing, the layout of the Lillgrunden WF is characterized by very small WT inter spacing's – i.e. 
down to 3.3 D. This makes the Lillgrunden WF especially interesting and challenging as a wake-load 
validation case, because the close spacing magnifies wake generated load effects compared to more 
traditional spaced WF’s. 



5.2.2 Measurements 
WT C-8 is instrumented with strain gauges resolving respectively the blade root flap bending moment, 
the main shaft bending moment and the tower base for-aft bending moment. In addition to these high-
frequency data, WT SCADA data (pitch setting, rotational speed and electrical power) were available 
for the WF WT’s during the measuring period. Unfortunately no meteorological mast data was 
available within the recording period, but as the WT power and pitch angle are directly correlated with 
the inflow wind speed, the ambient undisturbed wind speed has been determined as based on power 
and pitch angle recordings for corner placed WT’s located in free inflow conditions. A similar 
philosophy was used for estimating the ambient undisturbed wind direction, which was determined 
from nacelle orientations of corner placed WT’s. These nacelle orientations were initially calibrated 
against power deficit polar’s constrained to directions, where wake losses were dominated by the 
closest neighboring WT’s.  
Full polar load cases, associated with normal WT operation, are available for mean wind speeds 
ranging from 6m/s to 16m/s, and the data have been classified into 2m/s velocity bins. The blade root 
flap moments and the tower bottom for-aft moments have been post processed to fatigue equivalent 
moments using the Palmgren-Miner approach and subsequently normalized with the respective fatigue 
equivalent moments associated with a inflow wind speed of 9m/s – i.e. here represented by mean 
equivalent moments associated with the velocity bin [8;10]m/s. Wöhler exponents of 5 and 10 were 
assumed for the tower and blade composite structures, respectively.   

5.2.3 Simulations 
For the DWM validation study the load response of WT C-8 is simulated for mean wind speeds 
reflecting the median of the defined velocity bins. Measured wind speed dependent turbulence 
intensities (TI’s) are used, reflecting the offshore wind speed dependent “surface” roughness. However, 
no attempt is done to resolve TI as function of upstream fetch (i.e. direction). Thus, in the mean wind 
speed regime 6m/s-14m/s a TI of 5.8% is used – gradually increasing to 6.2% at 16m/s. As previously 
mentioned, both the deterministic and the stochastic part of the inflow are affected by ABL stability 
conditions. The deterministic mean wind shear and the stochastic turbulence input are described in the 
following.  

Mean wind shear 
The mean wind shear is stability dependent through the buoyancy impact on mixing in the ABL layer – 
in stable conditions with little mixing the shear profile gradient tend to increase, whereas in unstable 
conditions with increased mixing the shear profile tend to become more uniform. 
In the IEC-61400 code [8] the neutral wind shear is specified in terms of a power law approach as  

𝑈(𝑧) = 𝑈ℎ𝑢𝑏(𝑧/𝑧ℎ𝑢𝑏)𝛼 (5.2.1) 

with U being the mean wind speed, z being the height above terrain, and zhub being the hub height. The 
power exponent α is specified to 0.14 for an offshore site [62]. However, the new (not yet approved) 
revised version of the IEC code opens alternatively also for use of a log-profile defined as 

𝑈(𝑧) = 𝑈ℎ𝑢𝑏
𝐿𝑛(𝑧/𝑧0)

𝐿𝑛(𝑧ℎ𝑢𝑏/𝑧0) 
(5.2.2) 



with z0 being the roughness length. The log-profile is physical consistent and used in M-O similarity 
theory and, as seen, it takes the value 0 at z = z0 and the value Uhub at z = zhub. However, a 
recommended roughness length for offshore sites, consistent with the specifications of the power law 
exponent in equation (5.2.1), is not yet specified. We will therefore use equation (5.2.2) to introduce 
the effect of atmospheric stability in the power law description in an approximate manner.  
As a first step we rewrite equation (5.2.2) as 

𝑈(𝑧) =
𝑈ℎ𝑢𝑏

𝐿𝑛(𝑧ℎ𝑢𝑏/𝑧0) 𝐿𝑛
(𝑧/𝑧0) =

𝑢∗
𝜅
𝐿𝑛(𝑧/𝑧0) (5.2.3) 

where the last identity provides the link to the conventional description of the log-profile, with 𝑢∗ being 
the friction velocity, and κ being von Karman’s constant (= 0.4), viz. 

𝑢∗
𝜅

=
𝑈ℎ𝑢𝑏

𝐿𝑛(𝑧ℎ𝑢𝑏/𝑧0) (5.2.4) 

To establish a connection between the IEC specified power coefficient, α, and the roughness length, z0, 
we will require the best possible agreement of respectively the power law profile and log profile over 
the vertical extent of the rotor, and we will define this best fit in terms of minimum least square 
deviation. For this purpose we define the functional Π as 

𝛱(𝑧0) = 𝑈ℎ𝑢𝑏2 � �
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𝐿𝑛(𝑧ℎ𝑢𝑏/𝑧0) − �
𝑧

𝑧ℎ𝑢𝑏
�
𝛼
�
2

𝑑𝑧

𝑧ℎ𝑢𝑏+𝑅

𝑧ℎ𝑢𝑏−𝑅

 (5.2.5) 

and define z0 accordingly as the particular value, 0z (cf. Appendix B), that minimize the above 
functional, viz. 

𝑧0� = �𝑧0� �𝛱(𝑧0� ) = min
𝑧0

{𝛱(𝑧0)}�� (5.2.6) 

Adopting M-O similarity theory, the mean wind shear in stable conditions is traditionally formulated as 
[16] 
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(5.2.7) 

where LM is the M-O length, zi is the height of the atmospheric boundary layer, and ψm
(s) is the stability 

function associated with stable stratification. Based on the reflections concerning the neutral shear 
profile, we will now “transform” relation (5.2.7) into a power law formulation for the stable ABL 
condition using eq. (5.2.6). The resulting expression is 
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 ; 0 ≤ 𝑧/𝐿𝑀   ≤ 1  (5.2.8) 

where the value of the roughness length, z0, will relate to the power law exponent as described in 
equations (5.2.5) and (5.2.6). 
Again adopting M-O similarity theory, the mean wind shear under unstable conditions may be 
formulated as [16], [62] 
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Taking the same approach as for the stable stratification, we arrive at the following approximate 
expression when taking a power law approach 
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where, as in the stable case, the value of the roughness length, z0, relates to the power law exponent as 
described in equations (5.2.5) and (5.2.6). 

Turbulence 
Using the coupled DWM-HAWC2 platform [7] requires simulation of three different turbulence fields 
– a large scale turbulence field dictating the wake meandering, a traditional turbulence field accounting 
for conventional WT turbulence loading, and an isotropic and inhomogeneous small scale turbulence 
field accounting for WT loading caused by wake self generated turbulence. The wake self generated 
turbulence field is assumed to be invariant with respect to the ABL stability condition and is simulated 
using the classic Mann turbulence simulator [10]. The two remaining turbulence fields, which are 
highly dependent on ABL stability conditions, are generated based on the generalized buoyancy 
dependent spectral tensor [11],[13], which degenerate to the classic spectral tensor for neutral stability 
conditions. In all cases the turbulence fields are simulated as three dimensional fields resolved in 
suitable Cartesian grid configurations. 
The parameters of the buoyancy dependent spectral tensor are for each stability class defined in Table 
1, obtained from fitting model auto- and cross spectra to respective spectra obtained from full-scale 
sonic measurements from the Høvsøre site in Denmark. Fits are performed based on data recorded at 
60m and 40m altitudes, respectively. For both altitudes, data associated with the [8;9]m/s mean wind 
speed bin were used for the parameter fitting. However, the fits at 40m seem to fit slightly better the 
full-scale data compared to the 60m data in especially the neutral and the unstable regimes. As 40m 
altitude moreover is more likely to be within the surface layer, where LM is defined, than the 60m 



altitude (especially for stable stratification), it was decided to base input parameters to the generalized 
spectral tensor on the 40m data fits. 
Except for the turbulence intensity (described by the αε2/3 parameter when the remaining parameters 
have been fixed), it was further decided to adopt the (neutral) turbulence input specifications from the 
IEC code to [8] mimic the turbulence conditions at the Lillgrunden site, where no high-frequency 
meteorological measurements, as mentioned, are available. The IEC spectral tensor input parameters 
were originally obtained by fitting the spectral tensor spectra to a target Kaimal spectra [8]. 
Since we have decided to base the neutral turbulence generation partly on IEC specifications of 
turbulence tensor input (i.e. L, Γ – cf. section 3.2), the spectral tensor input parameters for neutral 
conditions do not match the fitted parameter values from the Høvsøre full-scale data. As a 
consequence, it was decided to scale (L, Γ) for the non-neutral (i.e. diabatic) conditions accordingly, 
although this approximation might not be completely true. However, it is believed to be a fair 
approximation – alternatively the neutral case could defined by the directly fitted values for L and Γ at 
the Høvsøre site, which is just another approximation to the Lillgrunden conditions. The relevant 
scaling factors, as well as the fitted values of Ri and ηθ (cf. section 3.2), are for each stability class 
given in Table 10 below. 

Table 10: Scaling factors of (αε2/3, L, Γ) relative to neutral conditions (indicated with subscript 
“neu”) and specific values of (Ri, ηθ). 

Stability 
Class 

αε2/3/ αε2/3
neu L/Lneu Γ/ Γneu Ri ηθ 

-3 (VU) 
1,018518519 2,148640625 0,925195542 

-
0,00349989 0,00093093 

-2 (U) 1 1,7584375 1,038538687 -0,0150151 0,000339836 
-1 (NNU) 0,925925926 1,439839844 0,993302909 -0,0186692 0,0002 

0 (N) 1 1 1 … … 
1 (NNS) 0,990740741 0,8984375 1,068211221 0,04 0,012 

2 (S) 0,816648148 0,714277344 1,077575873 0,1 0,000341279 
3 (VS) 0,462962963 0,255866406 1,074751047 0,0240355 0,00007 

The turbulence input parameters for simulation of the stability dependent turbulence boxes is thus 
obtained by: 1) Selecting the (Lneu, Γneu) neutral set from the IEC specifications, which equals (33.6m, 
3.9) for a large WT; 2) Determine the stability dependent (L, Γ) set using the scale factors defined in 
Table 10; and 3) Scale the turbulence intensity to match the measured levels using the following 
property of the generalized spectral tensor [11],[13]    

( ) ( )θθ ηΓΦαεηΓαεΦ ,,,,1,,,,,, 3/23/2 RiLkRiLk ijij =  (5.2.11) 

It should be noted, that identical values of the turbulence generation “seed” should be used for all 
stability classes. 
The conventional HAWC2 turbulence scaling procedure is first to generate a turbulence box based on a 
specified (L, Γ) parameter set and an arbitrary (though positive) value of the variance level quantified 
by αε2/3. The turbulence box is subsequently examined in the box center point corresponding to the 
turbine hub height, and a scaling factor is introduced that multiplied to all turbulence velocity vectors 



ensures the prescribed turbulence intensity in the examined point. This procedure is a practical 
approach, which in a straight forward and easy way enables to simulate turbulence for a variety of sites, 
for which the αε2/3 parameter are not obtainable from a direct spectral fits (cf. section 3.2.2). However, 
it has the drawback that energy from the high frequency part of the spectra, which cannot be included 
in the turbulence box due to the discretization of the box grid, is transferred to the resolved frequencies, 
but also – and perhaps more important – that energy is transferred from the low frequency regime to 
other frequencies due to the limited statistical significance of the simulated low frequency spectral 
components, that may vary significantly from one realization to another. It is therefore fair to say that 
with the conventional HAWC2 scaling procedure the resulting turbulence spectrum is somewhat 
violated. In normal situations these drawbacks seem not to be a major issue, as frequencies up to 0.5Hz 
are included, and the missing energy on higher frequencies only has marginal influence on the overall 
load level. Frequency spectra for the turbulence boxes with both conventional and meandering 
turbulence are shown in Appendix C for the three different stability classes investigated in this study – 
i.e. stable, neutral and unstable with reference to Table 1. The target turbulence intensity is 6% for 
neutral conditions, 3.7% for stable conditions and 8% for unstable conditions. 
An alternative – and perhaps more consistent – approach is to use a scaling factor based on the 
theoretical spectral tensor spectrum for neutral conditions. This is approach is used in the studies 
presented in sections 6 and 7, but not in the present load study. This is because we wanted to make this 
study a direct extension of a previous study for neutral conditions [63], where the conventional 
HAWC2 scaling was applied. However, differences between the two scaling approaches are expected 
to cause only minor changes to the results.  

5.2.4 Results 
The measured results are presented as scatter plots of fatigue equivalent moments versus ambient 
undisturbed wind direction. In general a huge scatter is observed in these results, which partly may be 
attributed to ABL stability effects. However, also other sources is likely to contribute such as air 
density variations, caused by seasonal variations, which might vary of the order of 10% and thus in turn 
may account for variations of fatigue equivalent moments of the order of 10%. 
The first set of comparison between loads and measurements was reported at the EWEA offshore 
conference in 2015 [64]. A very fine agreement between simulated and measured blade flapwise 
bending loads was seen below rated wind speed, cf. Fig. 64. As the measurement database also covered 
load measurements at wind speeds above rated wind speed, it was possible to compared simulated and 
measured load in this regime also. To the author’s knowledge, this is the first time ever that measured 
and simulated wake affected wind turbine loads have been compared above rated wind speed. The 
results, shown in Fig. 64, clearly demonstrate that the original implementation of the DWM model for 
multi-wake situations, as presented in [64], under-predicts the load level in multi-wake situations above 
rated wind speed.  
This issue was further investigated in a paper presented at the EWEA onshore conference in Paris [63], 
where it was found that the pragmatic assumption of only including wake deficit contributions from the 
nearest wind turbine is only valid in the wind speed regime below rated wind speed, where a high 
thrust and turbulent mixing is present. Above rated wind speed the individual upstream emitted WT 
deficits are significantly reduced, and here it seem to be better to take a linear perturbation approach, 
which is consistent with limited wake deficit magnitudes. The (relevant) upstream emitted wake 
deficits is thus directly added, which is also consistent with the approach taken in the linearized CFD  



  

  

  
Figure 64: Comparison between measured and simulated flapwise blade root bending moments. 
A very fine agreement is seen below rated wind speed (left). A significant under-prediction in the 

multi-wake sector from 0deg. to 100deg. is seen above rated wind speed (right). From [64]. 



model Fuga [59]. The suggested perturbation approach resulted in a significant improved agreement 
between measured and simulated load above rated wind speed. This is shown in Fig. 65 for both blade 
root flapwise moments and tower bottom bending moments.  

 

 
Figure 65:  Comparisons of measured and simulated fatigue equivalent moments associated with 

above rated wind speeds. Using the linear perturbation approach a very fine agreement is 
obtained for both blade root flapwise moments and tower bottom for-aft moments. 

 
The most recent contribution to the Lillgrunden serial is the inclusion of ABL stability affected 
turbulence and shear in the load simulations. As described in section 5.2.3 the same simulation 
procedure as in [63] has been adopted, however, now extended with shear and turbulence created for 
unstable (-2) and stable (2) conditions – cf. Table 1 for details. Even though temperature recordings 
covering the measurement period has been obtained from the Drogden lighthouse and corresponding 
stability levels have been derived, it was for practical reasons not possible to classify the load database 
according to the ABL stability classes mentioned above before deadline of this report. This work will 
be done in the future.  
However, with the numerical predictions conducted for various ABL stability conditions, it is possible 
to get insight in how stability affects the load levels, and to what extend stability can explain the rather 
high scatter level in the measurements. Results are shown in Fig. 66 for below rated wind speed WT 
operation and in Fig. 67 for above rated wind speed WT operation.  
 



 

 

 
Figure 66: Comparison of measured and simulated fatigue loads for the C-8 turbine below rated 
wind speed. With reference to Table 1, simulations are conducted for unstable (-2), neutral (0) 

and stable (2) ABL stability conditions using the maximum deficit wake merging operator. 
 



 

 

 
Figure 67: Comparison of measured and simulated fatigue loads above rated wind speed. With 
reference to Table 1, simulations are conducted for unstable (-2), neutral (0) and stable (2) ABL 

stability conditions using the linear perturbation deficit wake merging operator. 

For all wind speeds it can be seen that the tower bottom fatigue bending moments are largest in unstable 
and smallest in stable ABL conditions. This is easily explained by the difference in turbulence intensity 
associated with the stability conditions, where unstable conditions causes a turbulence level of 9.8%, 
neutral conditions corresponds to a turbulence level of 6.0%, and stable conditions corresponds to a 
turbulence level of 1.99%.  
In the inflow sector 150deg.-180deg., the investigated WT is not affected by upstream wakes, and it is 
thus possible to evaluate the impact from ABL stability on solitary WT loading. When observing the 
blade flapwise fatigue loads in this free sector, the results are significantly different than the tower 
fatigue loading. Contrary to tower loading, the blade loads are sensitive to both shear and turbulence 
levels, as both cause varying wind speeds over the rotor area. For rotating WT components these are 
counter acting effects, because stable conditions result in large shear and low turbulence intensity and 
vice versa for unstable conditions. For most wind speeds, it is seen that both stable and unstable 
conditions result in a larger fatigue loads than the neutral case. The only exception is at very low wind 



speed, where neutral and stable conditions result in approximately identical fatigue load levels, whereas 
larger fatigue load levels are observed for unstable conditions.  
In the wake affected conditions the same trend, with increased tower fatigue loads in unstable 
conditions and decreased tower fatigue loads in stable conditions, are seen. Also for wake affected 
inflow conditions the neutral situation seems to cause the smallest blade fatigue loads. However, for 
single wake situations it is interesting to notice, that stable ABL conditions result in both the largest 
fatigue load level (i.e. in a half-wake situations) and the smallest load level (i.e. in the full wake 
situation) compared to unstable and neutral ABL conditions. Finally, it is noted that a significant part of 
the observed measurement scatter potentially can be explained by ABL stability effects, especially 
remembering that very stable and very unstable stability effects are not included in the present results. 
  



6 Wind turbine control under non-neutral stability conditions 
In this chapter different controllers that are used in load simulations are explained. First the basic DTU 
controller is explained very briefly. This is the base line controller for generator torque and collective 
pitch control. Later, two more advanced controllers for reducing blade loads are explained – namely the 
individual pitch controller (IPC) and the individual flap controller (IFC). Finally a model based 
controller is derived and explained. This controller will be used for future research.  
In this part, it will be explained how the IPC and IFC (either the classical controllers or the advanced 
model controllers) reduce the cyclic loads associated with the changes in the blade effective wind speed 
due to wind shear. The disadvantage of using individual blade controllers is the increased pitch activity 
(or flap activity). Therefore, an optimization problem can be formulated to assess the blade root 
bending moment loads and actuator activities and decide when to enable the IPC or IFC controllers. 
For example in situations where the wind shear is extreme (e.g. for very stable ABL conditions) and the 
blade effective wind speed thus varies significantly with the azimuth angle, the optimization can decide 
to enable the IPC or IFC controllers and therefore reduce the blade loads.  

6.1 Base line controller 
The DTU controller consists of two different controllers for the partial load region (i.e. operation 
below rated wind speed) and the full load region (i.e. operation above rated wind speed) as well as a 
switching mechanism that switches between these two controllers smoothly around the rated wind 
speed.  

6.1.1 The partial load controller 
As for the partial load controller a simple nonlinear controller based on measurements from the 
rotational speed of the rotor is used. The control objective in the partial load region is to generate 
maximum power. This is achieved by keeping the operating point of the WT at the maximum value of 
the CP curve (the power coefficient of the turbine). In order to do so, two parameters need to be fixed, 
the collective pitch of the blades and the tip speed ratio (TSR, the ratio between the speed of the tip of 
the blades and the wind speed). It is easy to keep the collective pitch constants at its optimal value. 
However, in order to keep the TSR constant, the rotational speed needs to be adjusted with the wind 
speed. Writing down the equation of TSR and equating it to the optimal value, it is easy to see that the 
rotational speed become a linear function of the wind speed. Therefore, one way of keeping the optimal 
TSR, is to use wind speed measurements, calculate reference rotational speed and then adjust the 
rotational speed to follow a reference value. This method is implemented in the DTU controller. 
However, another more practical method of keeping the TSR constant is to adjust the generator torque 
as a nonlinear function of the rotational speed of the rotor. This is achieved by solving a one degree of 
freedom rigid body equation of motion of the rotor, while keeping TSR and CP values at their optimal 
values. Using this equation, we can calculate the generator torque as follows 

𝑄𝑔 = 𝐾Ω2 (6.1.1) 

in which 𝐾 is calculated as 



𝐾 =  
0.5𝜌𝐴𝑅3𝐶𝑝(𝜃𝑜𝑝𝑡,𝜆𝑜𝑝𝑡)

𝜆𝑜𝑝𝑡3  (6.1.2) 

where Ω is the rotational speed of the rotor, 𝜌 is the air density, 𝐴 is the rotor swept area, 𝑅 is the rotor 
radius, 𝐶𝑝 is the power coefficient value at optimum pitch 𝜃𝑜𝑝𝑡 and optimum tip speed ratio λopt.   

6.1.2 The full load controller 
As for the full load controller the objective is to keep the rotational speed and the generated power 
constant at their rated values. This is achieved by adjusting the collective pitch of the blades in 
response to errors in the rotational speed and, in some cases, additionally errors in the generated power. 
The gains of the PI controller are scheduled based on changes in the pitch angle to compensate for 
changes in the system due to changes in the operating point of the WT.  Full details of the controller are 
given in  [65]. 

6.2 Individual pitch controller 
On a large WT the effective wind speeds on the individual blades can be different, and they change as 
the azimuth angle of the blades change. This is due to different effects such as wind shear, tower 
shadow and stochastic spatial distribution of the wind field. Difference in the effective wind speeds 
result in different loads on the blades, and therefore it is desirable to adjust pitch of the blades 
individually to mitigate these loads. It is possible to reduce the flapwise bending using individual pitch, 
and different model based and classical methods have been suggested to control the blades 
individually. Since individual pitch control (IPC) is inherently a multi-input multi-output (MIMO) 
problem, it would be natural to use MIMO model based control methods. However classical methods 
can still be used, and with some transformation of the measurement signals and control actions it is 
possible to use PI controllers to achieve results as good as the ones using MIMO model based methods. 
In this work we briefly explain the individual pitch controller used in the succeeding “design load” 
simulations. Flapwise blade root bending moments are used as the measurement signals, and three 
azimuth dependent pitch signals are calculated, which are subsequently superimposed with the 
collective pitch and used as the pitch references of the individual blades.  
The three measurements obtained from the blade root bending moment sensors can be transformed into 
three signals that represent a mean value and two independent differential signals, respectively. This is 
achieved by transforming the signals from the non-rotating multi-blade coordinate to the rotating multi-
blade coordinate. The mean value is controlled by the collective pitch controller and is therefore not 
considered in this controller. The IPC controller has to mitigate the two independent differential 
signals, called d-q signals 
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The signals 𝑀1,𝑀2 and 𝑀3 are measured by e.g. strain gauges, and the signals 𝑀𝑑 and 𝑀𝑞 are 
calculated using the equations above. Two PI controllers are used to mitigate 𝑀𝑑 and 𝑀𝑞 by calculating 
corresponding 𝛽𝑑 and 𝛽𝑞 values. The 𝛽𝑑 and 𝛽𝑞 values refer to rotating multi-blade coordinates and are 



subsequently transformed back to non-rotating multi-blade coordinates yielding three individual signals 
using the following equations 
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A block diagram of the controller is shown in Fig. 68. 
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Figure 68: Block diagram of the individual pitch controller. 

6.3 Individual flap controller 
The individual flap controller (IFC) is another method of alleviating flapwise loads on the blades. The 
same principle as the IPC is used to transform the blade root bending moments in the non-rotating 
multi-blade coordinate to the rotating multi-blade coordinates. The same controller configuration as 
shown in Fig. 68 is used, except that the signals calculated are individual flap signals instead of 
individual pitch signals. More details on this controller can be found in [66]. 

6.4 Model predictive individual pitch control 
In this section we report preliminary results of using LiDAR assisted model predictive individual pitch 
control of the DTU-10MW wind turbine. This is a preliminary study and demonstrates the potentials of 
using advanced model based controllers employing new technologies, such as LiDARs for better 
control of WT’s. Some simplifying assumptions are taken, which will be explained in the upcoming 
sections. 
Model predictive control (MPC) has been an active area of research and has been successfully applied 
on different applications in the last decades  [67]. The reason for its success is its straightforward ability 
to handle constraints. Moreover it can employ feed-forward measurements in its formulation, which is 
a key feature we will employ in this work. This ability helps us to use LiDAR measurements in the 
controller. Besides, MPC can easily be extended to MIMO systems. WT control is basically a MIMO 
control problem, although traditionally the different inputs and outputs are paired, and separate control 
loops are used to overcome the control problem. In this work we treat the problem as a MIMO control 
problem, so the controller is aware of the interactions between different inputs and outputs and 
automatically compensate for this where necessary. 



The main drawback of MPC is its on-line computational complexity which has kept its application to 
systems with relatively slow dynamics for a while. Fortunately with the rapid progress of fast 
computations, better optimization algorithms, off-line computations using multi-parametric 
programming [68] and dedicated algorithms and hardware, its applications have been extended to even 
very fast dynamical systems such as DC-DC converters  [69].  
Basically MPC uses a model of the plant to predict plants future behavior in order to compute 
appropriate control signals to control outputs/states of the plant. To do so, at each sample time MPC 
uses the current measurement/estimates of outputs/states and solves an optimization problem. The 
result of the optimization problem is a sequence of control inputs, of which only the first element is 
applied to the plant, and the procedure is repeated at the next sample time with new measurements [70]. 
This approach is called receding horizon control. Therefore basic elements of MPC are: 

- A model of the plant to predict its future; 
- A cost function which reflects control objectives; 
- Constraints on inputs and states/outputs; 
- An optimization algorithm;  
- The receding horizon principle.    

Depending on the type of the model, which can be linear, hybrid and nonlinear, the control problem is 
called linear MPC, hybrid MPC and nonlinear MPC, respectively. Nonlinear MPC is normally 
computationally very expensive, and generally there is no guarantee that the solution of the 
optimization problem of MPC is a global optimum.  In this work we extend the idea of linear MPC 
using a linear plant, whose parameters vary as a function of a scheduling variable. Besides, the 
disturbance to the system is known beforehand, and therefore the controller can take appropriate 
actions before the disturbance affects the outputs. There are some assumptions that restrict our solution 
to a specific class of problems. The scheduling variable is assumed to be known for the entire 
prediction horizon, and the operating point of the system mainly depends on the scheduling variable. 

6.4.1 WT modeling 
In order to design and simulate a closed loop system with a model based controller, we need two types 
of models. One model is the high fidelity simulation model, which should be as accurate as possible in 
modeling the overall behavior of the plant. This model includes all the possible nonlinearities and 
dynamics of the real system.  
The second model is called the design model, which should be as simple as possible; yet it should be 
able to capture the most important dynamics and behavior of the system. Normally the design models 
are linearized and used locally around a linearization point. In the next two sections both the high 
fidelity simulation model and the linearized design model will be explained in details. 

High fidelity simulation 
In order to close the loop and test performance of the controller we need a simulation model. The 
simulation model behavior should be as close to the behavior of the real system as possible. Normally 
the simulation models include all degrees of freedom and the nonlinearities that can be modeled 
mathematically. There is the possibility of using different simulation models, developed by different 
research institutes, to verify closed loop behavior in different simulation scenarios. In this work FAST 
(Fatigue, Aerodynamics, Structures, and Turbulence) [71] is used as the simulation model, and the 
DTU-10MW reference wind turbine [72] is used as the plant. FAST is a publicly available program for 



simulating wind turbine behaviors. The FAST code is an aero-elastic simulator capable of predicting 
both the extreme and fatigue loads of two- and three-bladed horizontal-axis WT’s. In the simulation 
model 10 degrees of freedom are enabled, which are: generator, drive train torsion, 1st and 2nd tower 
fore-aft, 2nd tower side-side, 1st and 2nd blade flapwise and 1st blade edgewise degrees of freedom. 
The model structure is illustrated in Fig. 69.  

 

Figure 69: Closed loop system. 

Design model 
In this section the nonlinear model and important degrees of freedom are explained. Afterwards the 
linearization procedure is described, and a linear parameter varying model is derived for use in the 
model predictive controller. 
For modeling purposes, the WT can be divided into four sub-systems: Aerodynamics sub-system, 
mechanical sub-system, electrical sub-system and actuator sub-system. The aerodynamic sub-system 
converts wind forces into mechanical torque and thrust on the rotor. The mechanical sub-system 
consists of drive train, tower and blades. The drive train transfers rotor torque to the electrical 
generator. The tower holds the nacelle and withstands the thrust force. Blades transform wind forces 
into toque and thrust. The generator sub-system converts mechanical energy to electrical energy, and 
finally the blade-pitch and generator-torque actuator sub-systems are part of the control system. To 
model the whole WT, models of these sub-systems are derived, and at the end they are connected 
together. Fig. 70 below shows the basic sub-systems and their interactions.  

 

Figure 70: WT sub-systems. 



The dominant dynamics of the WT come from its flexible structure. Several degrees of freedom can be 
considered to model the flexible structure, but for control design, just a few important degrees of 
freedom are usually considered. In Fig. 71 the basic degrees of freedom, which are normally being 
considered in the design model, are shown. In this work we have considered two degrees of freedom – 
namely the rotational degree of freedom (DOF) and the tower fore-aft motion.  

 

Figure 71: Basic degrees of freedom in a WT. 

Nonlinearity of the WT model mostly comes from its aerodynamics. Blade element momentum (BEM) 
theory is used to numerically calculate aerodynamic torque and thrust on the wind turbine  [73]. Having 
the aerodynamic torque and modeling the tower fore-aft degrees of freedom with simple mass-spring-
damper, the whole system of equations with 2 elastic degrees of freedom becomes 

𝐽𝑟Ω̇  =  𝑄𝑟 –𝑁𝑔 𝑄𝑔 

𝑀𝑡𝑋̈𝑡 =  𝑄𝑡  −  𝐶𝑡 𝑋̇𝑡  −  𝐾𝑡 𝑋𝑡 

𝑃𝑒 =  𝑄𝑔 Ω𝑔 

(6.4.1) 

in which Qr and Qt are aerodynamic torque and thrust. Jr is the rotor moment of inertia, ψ is the drive 
train torsion, Qg is the generator torque, and Ng is the gearbox ratio. The tower mass, damping and 
stiffness factors are represented by 𝑀𝑡, Ct and Kt, respectively, and Pe and Xt are the generated 
electrical power and tower displacement, respectively. Values of the parameters can be found in  [72]. 
The torque and thrust are nonlinear functions of the rotational speed Ω𝑟, the effective wind speed 
𝑉𝑒 and the blade pitch Θ.  

𝑄𝑟 =
1
2

1
Ω𝑟

𝜌𝜋𝑅2𝑉𝑒3𝐶𝑝(Θ,Ω𝑟 ,𝑉𝑒) 

𝑄𝑡 =
1
2
𝜌𝜋𝑅2𝑉𝑒2𝐶𝑡(Θ,Ω𝑟,𝑉𝑒) 

(6.4.2) 



For controller design purposes we need to linearize the nonlinear model given in equation (6.4.1). The 
nonlinear terms are the aerodynamic torque and generated power. As mentioned before the 
aerodynamic torque is a nonlinear function of effective wind speed 𝑉𝑒, rotational speed Ω𝑟 and pitch of 
the blade Θ. This nonlinear function is determined by a look-up table. The look-up table is produced 
using blade element momentum theory (BEM). The generated power is nonlinear because it is a 
product of its two inputs, namely rotational speed and generator torque. The linearized state space 
model becomes 

 

 

 

(6.4.3) 

in which the linearization is done as follows 

 

 

 

(6.4.4) 

To get a linear model of the system we need to linearize the nonlinear model explained above around 
its operating points, which are determined by wind speed averaged over the rotor area. Wind speed 
changes along the blades and with the azimuth angle (angular position) of the rotor. This is because of 
wind shear, tower shadow and stochastic spatial distribution of the wind field. Therefore, a single wind 
speed does not exist to be used and measured in order to find the operating point. We bypass this 
problem by defining a fictitious variable called effective wind speed (ve), which characterizes the effect 
of wind on the rotor disc of the WT. Using the linearized aerodynamic torque and thrust, state space 
matrices for the 3 DOFs linearized model become 

𝜔̇𝑟 =  
𝛼1(𝑣𝑒)
𝐽𝑟

𝜔𝑟  +
𝛽11(𝑣𝑒)
𝐽𝑟

𝜃 +
𝛽12(𝑣𝑒)
𝐽𝑟

(𝑣𝑒 − 𝑣𝑡) − 𝑄𝑔 

𝑥̇𝑡 =  𝑣𝑡 

𝑣̇𝑡    =
𝛼2(𝑣𝑒)
𝑀𝑡

 𝜔𝑟 +
𝛽21(𝑣𝑒)
𝑀𝑡

 𝜃 +
𝛽22(𝑣𝑒)
𝑀𝑡

(𝑣𝑒 −  𝑣𝑡)  −
𝐶𝑡
𝑀𝑡

 𝑣𝑡  −
𝐾𝑡
𝑀𝑡

 𝑥𝑡 

𝑃𝑒 =  𝑄𝑔0𝜔𝑔  + 𝜔𝑔0 𝑄𝑔 

(6.4.5) 



in which the lower-case variables are deviations away from the steady state of the upper-case variables 
given in the first three equations. Consequently, the parameters of the linearized model are functions of 
wind speed, which in our approach acts as a scheduling variable. A detailed description of the model 
and linearization is given in [74]. 

 

Figure 72: Cp curve of the WT. 
 

 

Figure 73: Ct curve of the WT. 
 

According to the model described by the system of equations (6.4.5), the matrices of the state space 
model become 

𝐴(𝛾) =
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⎛
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𝐵(𝛾) =
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𝐶(𝛾) =
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⎛
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𝐷(𝛾) =
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in which 𝑥 = (𝜔𝑟 𝑥𝑡 𝑥̇𝑡  ), 𝑢 = (𝜃 𝑄𝑔), 𝑦 = (𝜔𝑟 𝑃𝑒 𝑥̇𝑡) are states, inputs and outputs, 
respectively. Now that we have the linearized state space model of the system, we can proceed to use 
this model in the control design procedure.  

6.4.2 Controller design 
In this section we begin by explaining model predictive control (MPC) and different components of it 
in general. Then we will present the linear MPC formulation. After explaining linear model with 
known disturbance, we will explain how the MPC problem of such system with can be formulated. 

Model predictive control 
Generally the nonlinear dynamics of a plant can be modeled with the following difference equation 

 (6.4.10) 

with xk, uk and dk being states, inputs and disturbances, respectively. Using the nonlinear model, the 
nonlinear MPC problem can be formulated as 

 

(6.4.11) 

where 𝑙 denotes some arbitrary norm and U and X show the set of acceptable inputs and states. As it 
was mentioned, this problem is computationally too expensive, because of the nonlinear model. One 
way to avoid this problem is to linearize around an equilibrium point of the system, and then use the 
linearized model instead of the nonlinear model. We can also employ the fact that we know the future 
values of the disturbance to the system, namely the wind speed. 

Linear MPC formulation 
The problem of linear MPC can be formulated as 

 

(6.4.12) 

Assuming that we use norms 1, 2 and ∞, the optimization problem becomes conve x, provided that the 
sets U and X are convex. Convexity of the optimization problem makes it tractable and guarantees that 
the solution is the global optimum. The problem above is based on a single linear model of the plant 
around one operating point. However, for some plants the assumption of a linear model does not hold 
for long prediction horizons. This is because the plant operating point changes, for example on the 
basis of disturbances that act as a scheduling variable. An example could be a WT for which wind 
speed acts as a scheduling variable and changes the operating point of the system. 



WT control is a challenging problem as the dynamics of the system changes based on wind speed, 
which has a stochastic nature. Here we use the wind speed as the scheduling variable. With the 
advances in the LiDAR technology [75], it is possible to measure wind speed ahead of the turbine, and 
this enables us to have the scheduling variable of the plant for the entire prediction horizon. As it was 
mentioned in section before, wind turbines are nonlinear dynamical systems, and if we use the 
nonlinear model directly in the MPC formulation, the optimization problem associated with the MPC 
becomes non-convex. In general, non-convex optimization problems are very complicated to solve, and 
there is no guarantee that we could achieve a global optimum. One way to avoid complex and non-
convex optimization problems is to linearize the system around an equilibrium point, and then use the 
obtained linearized model as an approximation of the nonlinear model. However, for WT’s the 
assumption of the approximate linear model does not hold for long prediction horizons. This is because 
the operating point of the system changes as a function of wind speed which, as mentioned, has a 
stochastic nature. In the next section we formulate the MPC problem using the linearized state space 
model with varying parameters as a function of wind speed. 

Linear LPV formulation with wind speed dependent parameters 
The linear parameter varying (LPV) model of the nonlinear system is of the following form 

 (6.4.13) 

This model is formulated based on deviations from the operating point. However, we need the model to 
be formulated in absolute values of inputs and states. Because the operating point in our problem 
changes as a function of the scheduling variable, we need to introduce a variable to capture its 
behavior. In order to rewrite the state space model in the absolute form we use 𝑥�𝑘 = 𝑥𝑘 − 𝑥𝑘0, 𝑢�𝑘 =
𝑢𝑘 − 𝑢𝑘0 and 𝑑̃𝑘 = 𝑑𝑘 − 𝑑𝑘0 , where 𝑥𝑘0, 𝑢𝑘0and 𝑑𝑘0 are values of states, inputs and disturbance at the 
operating point. Therefore, the LPV model becomes  

 (6.4.14) 

which can be written as 

 (6.4.15) 

with 

 (6.4.16) 

Now having the linear model (in fact this is an affine model) of the system we can proceed to compute 
the state predictions as 

 

 

 

(6.4.17) 



 

Now that we know how to calculate the state and output predictions we can stack the predictions in one 
vector as below 

 

(6.4.18) 

Using the stacked notation the state and output predictions can be written as functions of the current 
state, the input sequence (stack of it), and the disturbance 

 

(6.4.19) 

in which the matrices are defined as 
  



 

(6.4.20) 

 

(6.4.21) 

 

 

 

(6.4.22) 

After computing the state predictions as functions of control inputs, we can write down the 
optimization problem similar to a linear MPC problem as a quadratic program – more details can be 
found in  [76]. The problem of linear MPC can be formulated as 

 

(6.4.23) 

6.4.3 Controller objectives 
The most basic control objective of a WT is to maximize captured power during the life time of the 
WT, which is equivalent with maximizing captured power when wind speed is below its rated value. 
This is also called maximum power point tracking (MPPT). However, when wind speed is above rated, 
control objective becomes regulation of the outputs around their rated values while trying to minimize 
dynamic loads on the structure. These objectives should be achieved against fluctuations in wind speed, 
which acts as a disturbance to the system. In this work we have considered operation of the WT in the 



above rated (full load) regime. Therefore, we try to regulate rotational speed and generated power 
around their rated values and alleviate the effect of wind speed fluctuations. 

Collective pitch controller 
The first controller uses the linearized model, which was explained in the previous sections, augmented 
with a second order system modeling actuator dynamics. Measured outputs that are fed to this 
controller are 
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⎜
⎛

𝜔𝑟
𝑃𝑒
𝑎𝑡
𝜃𝑐
𝑉ℎℎ⎠

⎟
⎞

Rotor rotational speed
Generated power

Tower top acceleration
Measured collective pitch

Hub height wind speed vector

 

For the collective pitch controller we have used a dual mode horizon MPC approach. In this approach 
the infinite horizon of the cost function is divided into a finite horizon cost function as shown in the 
optimization problem (6.4.23) and a terminal cost equivalent to the rest of the horizon to infinity. The 
matrix Qf of the terminal cost in formula (6.4.12) is found by solving an Algebraic Riccati Equation 
(ARE). In order to solve the ARE, we need dynamics of the system. We use the wind speed of the last 
sample of LiDAR measurement as the best estimate of the wind speed for k ≥ N , and therefore we 
assume dynamics of the system to be constant and determined by this wind speed. Solving ARE’s 
online might be time consuming, and therefore we bypass this problem by making a grid of wind 
speeds and finding a Qf for each wind speed offline. During the simulation we use a look-up table of Qf 
matrices and find the appropriate matrix. Of course, this approach holds only if the constraints are not 
active at the end of horizon. In the WT case we make sure that the constraints are not active by taking 
the prediction horizon long enough. 

Individual pitch controller 
The objective of this controller is to reduce fluctuations of blade root bending moments by adjusting 
the pitch angle based on calculated effective wind speeds and blade root bending moment 
measurements for each blade individually. The controller will reduce 1P fluctuations of blade root 
bending moments. The fluctuations in the blade root bending moments are considered to originate from 
the bending moment produced by the hub height wind speed. Measurements that are fed to the 
individual pitch controller are out-of-plane blade root bending moments and calculated effective wind 
speeds 
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𝑉1
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𝑉3⎠

⎟
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Flapwise blade root bending moment of blade 1
Flapwise blade root bending moment of blade 2
Flapwise blade root bending moment of blade 3

Wind speed vector for blade 1
Wind speed vector for blade 2
Wind speed vector for blade 3

 

6.4.4 Simulations 
In this section simulation results for the obtained controllers, which are denoted as MPC IPC (the 
proposed approach) and PI IPC (the benchmark controller), are presented. The controllers are 



implemented in MATLAB and are tested on a full complexity FAST  [71] model of the reference wind 
turbine  [77]. The tuning matrices are taken to be Q = diag(1105, 0.51, 5.5, 0.002, 0.155) and R = 
diag(100,1), respectively. Simulation results are shown for two scenarios – one stochastic hub height 
wind speed with wind shear, and one with extreme wind shear. Both scenarios are taken from the IEC 
standard  [8]. 

Extreme wind shear 
In this section simulation results for a vertical extreme wind shear (EWS) event are presented. A power 
law wind profile is used to demonstrate wind shear. In the vertical EWS event, the shear power law 
exponent ramps up from a normal value of 0.2 to an extreme value of 0.3 in 2 seconds and after 10 
seconds ramps down to the normal situation. Controller performance for the MPC IPC and PI IPC are 
compared for this event. A comparison of blade pitch is given in figures below. 

 
Figure 74: Tilt signal; MPC IPC is solid-blue, and PI IPC is red-dashed. 

 
Figure 75: Yaw signal; MPC IPC is solid-blue, and PI IPC is red-dashed. 



 
Figure 76: Blade bending moments; MPC IPC is solid-blue, and PI IPC is red-dashed. 

 
Figure 77: Pitch of one blade; MPC IPC is solid-blue, and PI IPC is red-dashed. 

As it can be seen, the MPC IPC gives a smoother increase in blade pitch while PI IPC has an overshoot. 
Out-of-plane blade root bending moments of one of the blades are given in Fig. 76. Clearly the MPC 
IPC gives better performance in reducing both steady state and transient fluctuations. In order to 
simplify comparison of the signals, Coleman transformation of the three out-of-plane blade root 
bending moments are calculated, and the results, namely yaw and tilt signals, for both controllers are 
given in Fig. 74 and Fig. 75, respectively. 

Stochastic wind 
In this scenario, simulations are done with hub height turbulent wind. The Kaimal model [8] is chosen 
as the turbulence model, and TurbSim [78] is used to generate the wind profile. Mean wind shear is 
included with 0.2 as the value for the power-law exponent. In order to stay in the full load regime, a 
realization of a turbulent wind field is based on category C of the IEC 61400-1turbulence categories  [8] 
with 18m/s as the mean wind speed. The results are given in the following figures. 



 
Figure 78: Generator-torque reference; MPC IPC is blue-solid, and PI IPC is red-dashed. 

 
Figure 79: Rotor rotational speed (ωr); MPC IPC is blue-solid, and PI IPC is red-dashed. 

 
Figure 80: Electrical power; MPC IPC is blue-solid, and PI IPC is red-dashed. 



 
Figure 81: Tower base pitching (or fore-aft); MPC IPC is blue-solid, and PI IPC is red-dashed. 

 
Figure 82: Pitch of one of the blades; MPC IPC is solid-blue, and PI IPC is red-dashed. 

As seen the MPC IPC controller is superior in all investigated aspects compared to the PI IPC 
controller. 

6.5 Simplistic controller test case 
In this section we will investigate the load alleviating potential of controllers, more advanced that the 
base line controller described in section 6.1, for WT’s operating in WF’s. Obviously, real WF’s 
represent a broad range of topological variations, which in turn will affect the loading of the individual 
WF WTs. To proceed we therefore need to define a suitable representative test case.  

6.5.1 Generic WF 
Considering the closest upstream WT as the most load influencing, we will define the simplest possible 
generic WF topology – namely a WF consisting of only two WT’s. This simple WF is investigated for 
three different distances between the WT’s representing respectively small (3D), medium (5D) and 
large (8D) WT inter-spacings.  
In an attempt to include impact from various inflow conditions on the wake loading the following wake 
cases are considered for each of the WT inter-spacings: 



o Partial wake inflow cases with inflow angles relative to the imaginary line connecting the two 
turbines defined as: {±i x [Arctan(D/jD)+Arctan(TI)]/5}; i = 0, 1, … , 5; where j takes the 
values 3, 5 or 8 according to the turbine spacing in question. 

Each of the partial wake inflow cases are assumed to have identical probability for occurrence – i.e. 
uniform probability density function (pdf) of the individual inflow cases. This imaginary WF layout 
along with its set of inflow conditions is illustrated in Fig. 83. 

 
Figure 83: Generic WF layout and the defined set of inflow cases. 

6.5.2 Computational setup - wind fields 
We will assume onshore wind conditions and define the ambient wind climate – i.e. the deterministic 
mean wind field and the turbulence – conditioned on the ABL stability condition according to the 
description given in section 5.2. Only exception is – as mentioned in section 5.2.4 – scaling of the 
turbulence. Here, we will use a scaling factor based on the theoretical spectral tensor spectrum for 
neutral conditions.  
Referring to the turbulence description in section 5.2, αε2/3

neu is a scaling parameter, which for a fixed 
parameter set (Lneu, Γneu) determines the variance intensity of the generated neutral turbulence field. 
For a given target intensity value we determine the particular αε2/3

neu value, which corresponds to the 
requested theoretical target value. This αε2/3

neu value is determined from the following relation [9] 
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where the relationship between 2
isoσ  and 2

11σ (i.e. variance of the longitudinal turbulence component), 
for neutral conditions (i.e. classic Mann spectral tensor), is given in Fig. 84 below. 

 
Figure 84: Dependence of turbulence component variances and component length scales with 

spectral tensor parameter Γ. 

Thus, the scaling factor to be applied on turbulence boxes generated according to the specifications in 
Table 10 is therefore 3/12/13/2

neuneu εααε = . To summarize, the following procedure is applied to obtain the 
requested neutral and non-neutral turbulence fields: 

1) For each stability class turbulence boxes are simulated using relevant (Rig, ηθ) parameters 
and the turbulence length scale determined as L = LIEC code × ( L/Lneu), the turbulence eddy 
life time parameter given by Γ = Γ IEC code × ( Γ/Γ neu), and αε2/3 =  1 × (αε2/3/ αε2/3

neu). The 
respective scaling values ( L/Lneu), ( Γ/Γ neu) and (αε2/3/αε2/3

neu) as well at the (Rig, ηθ) sets are 
obtained from Table 10, and, as mentioned, based on analysis of full-scale data from the 
Danish Høvsøre site; 

2) For a specified mean wind speed, the turbulence fields resulting from 1) are subsequently 
scaled to the requested intensity at the site of interest by multiplying with a common factor 
for all stability classes, 3/12/1

neuεα , where 3/2
neuαε  is obtained from equation (6.5.2). This scaling 

is justified by the property of the generalized spectral tensor stated in equation (5.2.11).     
We will assume onshore wind conditions, and to mimic such wind conditions the undisturbed ambient 
wind climate are defined in accordance with IEC class 2A For each mean wind speed and for each 
stability class, 6 realisations (i.e. 6 different turbulence seeds) of each type of turbulence boxes are 
conducted to improve statistical significance of the results.   

6.5.3 Computational setup – WT fatigue loads 
Load simulations are performed using the state-of-the-art aeroelastic code HAWC2 [79] coupled with 
the DWM model [7] together with the NREL 5MW turbine [77] with a rotor diameter of 126m and a 
hub height equal to 90m. The structural part of HAWC2 is based on a multi-body formulation using the 
floating frame of reference method. Each body includes its own coordinate system with calculation of 



internal inertia loads, when this coordinate system is moved in space, and hence large rotation and 
translation of the body motion are accounted for. 
The WT sensors defined for the analysis are: blade flap bending moment; rotor yaw moment; and tower 
bottom for-aft moment. These three sensors are selected because they reflect the most significantly 
wake driven loading of turbine main components. The focus of the study is on turbine fatigue loads, 
and consequently all sensor signals are post processed to give fatigue equivalent moments as based on 
the traditional Palmgren-Miner linear damage accumulation rule [80]. A Wöhler exponent of 4 was 
used for tower and rotor loading, whereas a Wöhler exponent of 12 was used for blade loading. 
Simulated mean wind speeds in the range [5;25]m/s with steps of 2m/s, each with yaw errors as 
specified in the IEC code (-10o; 0 o; 10o) with probabilities of occurrence of respectively (25%, 50%, 
25%), are considered for the WF turbine design envelope. This leads to a total of 49.896 aeroelastic 
computations for the onshore case for each of the two investigated controllers. 

6.5.4 Climatology 
A representative onshore ABL stability climatology – i.e. the pdf of a given stability condition 
conditioned on the mean wind speed – is obtained by analyzing 51.935 10-minute data series from a 
meteorological tower at the Dutch Cabauw site. This site is characterized by flat and (relative) 
homogeneous upstream conditions. The stability classification is performed using the AMOK approach 
described in section 2.5. The resulting conditional stability pdf’s were subsequently “transformed” to 
be conditioned on the mean wind speed at hub height level – i.e. 90m asl. The data set covered the 
mean wind speed range [4;16]m/s with an acceptable data coverage. The resulting stability climatology 
is illustrated in Fig. 85. As expected, the neutral stability condition prevails in the high wind regime, 
where mechanical friction dominates buoyancy effects.   

 
Figure 85: Stability climatology obtained from Cabauw measurements. 

6.5.5 Results 
Based on the described setup, we will compare the WF performance of the base line controller and the 
individual pitch controller, respectively. The considered WT design cycle is limited to IEC DCL 1.2 
(i.e. normal operation), and, in accordance with the IEC code, the mean wind speed is assumed to be 
Rayleigh distributed. In terms of probability of occurrence, a simulated mean wind speed is to be 
considered as the median of a 2m/s bin, such that e.g. a simulated 5m/s represents the mean wind speed 



bin [4;6]m/s. Given the fact that the climatology is available for up to 16m/s only, we replace the 
Rayleigh distribution by a variant – namely the Rayleigh distribution constrained to the mean wind 
regime, where the climatology is available and the WT is operation; i.e. [4;16]m/s.  
The metric for the controller inter comparison is the WT DCL 1.2 fatigue loading aggregated over all 
stability classes, all yaw errors and all mean wind speeds represented in the available climatology. Prior 
to convoluting the computed fatigue loads with the respective pdf’s, these are, for each of the 
investigated sensors, averaged over the computed stochastic realizations – i.e. for each individual load 
case determined as the arithmetic mean of the 6 fatigue equivalent moments associated with the applied 
6 turbulence seeds.  
The results are, for the three different investigated WF spacings, summarized in the tables below. 

Table 11: Aggregated WT design cycle fatigue equivalent moments for the 3D spacing case. 
 Base line  

[kNm] 
Individual pitch 

[kNm] 
Blade root flap 5636.46 4987.76 

Tower bottom for-aft 7852.56 7887.63 
Tower top torsion 1911.23 1867.21 

 

Table 12: Aggregated WT design cycle fatigue equivalent moments for the 5D spacing case. 
 Base line  

[kNm] 
Individual pitch 

[kNm] 
Blade root flap 5544.87 4719.94 

Tower bottom for-aft 6756.54 6811.76 
Tower top torsion 1877.19 1826.92 

 

Table 13: Aggregated WT design cycle fatigue equivalent moments for the 8D spacing case. 
 Base line  

[kNm] 
Individual pitch 

[kNm] 
Blade root flap 5504.96 4579.14 

Tower bottom for-aft 6424.63 6489.45 
Tower top torsion 1865.56 1813.26 

 
In conclusion, it is obvious from the results presented in Table 11, Table 12, and Table 13, that the 
individual pitch controller is superior to the traditional base line controller for WT’s operating in WF’s 
– at least for this simple case study. This is true for all investigated WT component cross sectional 
moments except the tower bottom for-aft moment, which is marginally increased with the individual 
pitch controller. Similar results have previously been obtained for solitary WT’s [83], and given the 
fact that all the present load cases origin from wake affected inflow cases; that the closest wake 
generating WT are the most load influencing; and the load margins between the base line and the 



individual pitch controller are significant, is believed that the above conclusion is also valid for most 
other WF layouts.    

7 Design procedures including ABL stability effects 
The IEC standard [8] for wind turbine loads describes the load envelope, which a turbine design has to 
comply with. However, the present version of this code does not consider the ABL stability effects, 
which is especially important for wake affected inflow conditions, because ABL stability impacts load 
generating wake dynamics in addition to its general influence on turbulence and the wind shear profile. 
At this point it should be noted that the present project, and therefore also this particular analysis, is 
restricted to wake affected WT inflow conditions. The present section deals with possibilities for 
including ABL stability in recommended practices for WT design.   

7.1 Including an additional stability dimension 
A straight forward inclusion of the ABL stability load aspect in the IEC code would be to add a new 
dimension – the ABL stability – to the recommended design basis. Depending on the characteristics of 
upstream fetch it could be argued to also condition the stability statistics on direction, but in a code 
context this is, however, mush too detailed. A code consistent implementation would be to quantify 
stability by defining a number of stability classes with each their probability of occurrence conditioned 
on the mean wind speed. This type of implementation requires definition of characteristics 
climatologies for at least an offshore and an onshore case, respectively. 
The drawback of an additional design cycle dimension is the considerable amount of additional 
computational load resulting. This motivates an investigation of whether or not it is possible to collapse 
an ABL stability probability distribution into a few design stability classes, whereby the computational 
load will be significantly reduced compared to adding the full stability dimension. This investigation is 
treated in section 7.2.  

7.2 Collapse of the stability dimension into a few design stability classes 
We will investigate the potential of design stability classes by analyzing a very simple generic WF 
populated with only two 5MW turbines, and we will operate these WT’s under a stability climatology 
representing an offshore site. Moreover, we will limit the study to a simplified design envelope 
consisting of normal operation fatigue driven load cases only – i.e. IEC DCL 1.2 in analogy with the 
analysis presented in section 6.5.  

7.2.1 Approach 
The basic idea is to base the investigation on a mapping of the ABL stability pdf on selected pdf’s 
associated with predefined load sensors on turbine main components (i.e. tower, main shaft and 
blades); and moreover to be able to consistently track back arbitrary load sensor quantiles to quantiles 
of the driving stochastic forcing under consideration (i.e. ABL stability), thus facilitating the definition 
of a representative design stability class on a rational basis for a pre-specified confidence level. 
The treatment of the resulting single-input multiple-output system is based on a classical theorem for 
transformation of stochastic variables. Let a stochastic variable, ξ, characterize some type of external 
inflow conditions (e.g. ABL stability), and l be a stochastic variable characterizing some resulting wind 



turbine load response (e.g. aggregated fatigue equivalent moment corresponding to a mean wind speed 
specific member of the selected simplified design envelope, DCL 1.2, and associated with a specific 
main component cross section). Thus 

𝑙 = 𝐿(𝜉) (7.2.1) 

where L(•) is a (load) transformation function, which relates the external wake and stability affected 
wind loading with the structural response signal in question. The relationship between the pdf of ξ, fξ, 
and the requested pdf of l, fl, is given as [81] 

𝑓𝑙(𝑙) = �
𝑓𝜉(𝜉𝑖)

|𝐿′(𝜉𝑖)|

𝑁

𝑖=1

 (7.2.2) 

where (•)´ denotes differentiation with respect to ξ, and N is the number of ξi-roots satisfying the 
equation  

𝑙 = 𝐿(𝜉𝑖) (7.2.3) 

for specific choices of l.  
Once the load transformation (7.2.1) is defined, the “inverse tracking”, relating an arbitrarily selected 
design envelope load quantile to quantiles of the driving stochastic forcing in a rational manner, is 
straight forward and established by evaluating the inverse transformation. The inverse transformation 
is, however, only unique if the number of roots, N, in the above equation equals one. In this case, the 
inverse tracking is given by 

𝜉 = 𝐿−1(𝑙) (7.2.4) 

The suggested approach is illustrated in Fig. 86, where it is also indicated that the complicated load 
transformation function L(•) is numerically determined using the aeroelastic code HAWC2 coupled 
with the DWM model. 

 
 



Figure 86: Transformation(s) between stochastic input (ABL stability) and stochastic output 
(component fatigue load response).  

The case where N is larger than one thus poses a “selection problem”, which in the end will rely on a 
motivated definition. A logical choice among the countable number of possible candidates, ξi, are the 
particular ξi contributing the most to the load quantile in question, ξm, i.e. 

𝜉𝑚 = �𝜉𝑚�
𝑓𝜉(𝜉𝑚)

|𝐿′(𝜉𝑚)| = max
𝑖

𝑓𝜉(𝜉𝑖)
|𝐿′(𝜉𝑖)|� (7.2.5) 

 The present study will be based on a 98% confidence level. 

7.2.2 Case study 
As mentioned, real WF’s obviously in general represent a broad range of topological variations, which 
in turn will affect the particular loading of the individual WT. For the present study we will use the 
simplistic WF defined in section 6.5.1, and we will argue that because the closest wake generating WT 
in general are the most load influencing, and because we only assess the relative importance of various 
ABL stability conditions, the results of the present investigation reach beyond this particular case 
study. Also in analogy with the investigation in section 6.5.1 we will analyze design stability classes 
associated with three different distances between the WT’s representing respectively small (3D), 
medium (5D) and large (8D) WT inter-spacings.   

7.2.3 Climatology 
A representative offshore ABL stability climatology is obtained by analyzing 167.762 10-minute series 
from a meteorological tower at the Danish Horns Rev site. The stability classification is performed 
using the AMOK approach described in section 2.5 with temperature input from a sensor located well 
within the surface layer (i.e. at 13m above sea level (asl)), and wind speed input from a top-mounted 
cup anemometer at 62m asl. The resulting conditional stability pdf’s were subsequently “transformed” 
to be conditioned on the mean wind speed at hub height level – i.e. 90m asl. The data set covered the 
mean wind speed range [4;25]m/s with an acceptable data coverage. The resulting stability climatology 
is illustrated in Fig. 85.  
At low mean wind speeds the mechanical friction is low both because the water surface is smooth and 
because the friction is proportional to the flow velocity. The buoyancy impact on the stability 
condition, on the other hand, is not wind speed dependent, and therefore the balance between the 
friction and buoyancy created turbulence depends on the mean wind speed. An artefact of this is clearly 
seen in Fig. 87, where buoyancy dominates in the low speed regime resulting in an overrepresentation 
of non-neutral stability conditions contrary to the situation in the high speed regime, where friction 
based neutral conditions prevails. 

 



 

Figure 87: Stability climatology obtained from Horns Rev measurements. 
 

7.2.4 Transformation functions 
The transformation L defined in section 7.2.1 is determined numerically using the state-of-the-art 
aeroelastic code HAWC2 [79] coupled with the DWM model [7] and applied with the NREL 5MW 
turbine [77]. As focus is on IEC DCL 1.2, the post processing of sensor results (i.e. transformation to 
fatigue equivalent moments) also align with the investigation performed in section 6.5. Thus, the 
transformation L includes the entire numerical processing leading from ABL stability inflow condition 
to specific main component fatigue moments (including averaging of processed equivalent moments 
over performed stochastic realizations (i.e. over the range of the 6 turbulence seeds applied). The setup 
has required a total of 49.896 aeroelastic computations. 

7.2.5 Results 
Contrary to the investigation performed in section 6.5, we aim for results (i.e. design stability classes) 
conditioned on the mean wind speed. This is because the stability pdf depends on the mean wind speed, 
because arbitrary mean wind speed pdf’s can be consistently treated, and because the computational 
requirements is largely identical with the computational load that would result, in case the design 
stability classes were based on the full IEC DCL 1.2 design cycle resulting from convoluting the mean 
wind specific loads with a specified mean wind distribution. In terms of computational load, the only 
difference is generation of more turbulence fields in case the design stability classes turn out to be 
mean wind speed dependent – the number of aeroelastic computations is identical.       
Because of the discrete character of the derived response pdf’s, we must adopt a suitable interpolation 
scheme in order to resolve relevant quantiles with sufficient accuracy. For this purpose we use a 
dedicated spline-like approach developed in [82], which assures that the probability mass, associated 
with a particular stability bin, is preserved using a suitable interpolation function of differentiability 
class C3.  
For the medium size WT spacing (i.e. 5D) examples of (seed-averaged) fatigue equivalent flap root 
moment response curves and their derivatives as well as the resulting load pdf’s and cumulative 



distribution functions (cdf’s) are shown in Fig. 88 and Fig. 89 for the mean wind speeds 8m/s and 
14m/s, respectively. The derivatives are determined using a second order central difference scheme 
except for the “end points”, where second order forward and backward approaches are used. 
 

 
 

Figure 88: The 5D 8m/s case. (left) Load response function, MBRflap (red), and its derivative, dl/dS 
(black), for the blade root flap moment as function of the stability identifier; (right) Load 

response pdf and cdf for the blade root flap moment. 
  

 
 

 
Figure 89:  The 5D 14m/s case. (left) Load response function, MBRflap (red), and its derivative, 

dl/dS (black), for the blade root flap moment as function of the stability identifier; (right) Load 
response pdf and cdf for the blade root flap moment. 

  



The same results, but for the tower top torsion fatigue moments, are shown in Fig. 90 and Fig. 91 for 
the mean wind speeds 8m/s and 14m/s, respectively. 
 

  
Figure 90:  The 5D 8m/s case. (left) Load response function, MTTtorsion (red), and its derivative, 

dl/dS (black), for the tower top torsion moment as function of the stability identifier; (right) Load 
response pdf and cdf for the blade root flap moment. 

 
 

  
Figure 91:  The 5D 14m/s case. (left) Load response function, MTTtorsion (red), and its derivative, 

dl/dS (black), for the tower top torsion moment as function of the stability identifier; (right) Load 
response pdf and cdf for the blade root flap moment. 

  



Finally analogue results, but now for the tower bottom for-aft fatigue moments, are shown in Fig. 92 
and Fig. 93 for the mean wind speeds 8m/s and 14m/s, respectively. 
 

  

 
Figure 92:  The 5D 8m/s case. (left) Load response function, MTBfor-aft (red), and its derivative, 

dl/dS (black), for the tower bottom for-aft moment as function of the stability identifier; (right) 
Load response pdf and cdf for the blade root flap moment. 

 

  

 
Figure 93:  The 5D 14m/s case. (left) Load response function, MTBfor-aft (red), and its derivative, 
dl/dS (black), for the tower bottom for-aft moment as function of the stability identifier; (right) 

Load response pdf and cdf for the blade root flap moment. 
 
 

 



7.2.6 Discussion 
We see that response curves are (roughly) monotonic in the ABL stability measure, making the 
selection problem mentioned in section 7.1 an easy task. For the tower loading the gradients with 
respect to the stability measure are (predominantly) negative for all mean wind situations, indicating 
that the fatigue loading decreases for increasing degree of stable ABL stratification. This is expected. 
For the blade loading, however, the sign of gradients with respect to the stability measure depends on 
the mean wind speed. In the low wind regime these gradients are predominantly negative (cf. Fig. 88), 
whereas they are positive in the high wind regime (i.e. increasing fatigue loading for degree of stable 
ABL stratification), which at a first glance might seem surprising. This behaviour is an artefact of this 
component rotating through a shear layer, which is significantly affected by ABL stability conditions 
(cf. section 5.2). The wind shear variability with stability class (cf. Table 1) is illustrated in Fig. 94. 

 
Figure 94:  Wind shear profiles as function of stability class (cf. Table 1). 

 
For increasing degree of stable stratification, a rotating WT component will thus experience two 
counteracting effects: 1) Decreasing turbulence loading as well as degreasing load exposure from wake 
dynamics; and 2) Increasing periodic fluctuating loading from wind shear. The balance between these 
two effects dictates the sign of the fatigue load gradients with respect to the stability measure. The 
tower, however, is not sensitive to the wind shear, which explains the strictly monotonic behaviour of 
tower fatigue loading with the stability measure. 
As a consequence of this observation it is clear, that a universal design stability class, covering all 
turbine components, is not obtainable. We therefore aim at one design stability class for the rotating 
components of a WT and another design stability class covering the non-rotating WT components. This  
means that the computational burden will be considerable reduced compared to straight forward 
inclusion ABL stability as an additional design dimension as described in section 7.1 but, however, 
increased by a factor of two compared to present practice, where ABL stability effects are not 
considered. 
 



7.2.7 Synthesis 
It follows from the previous discussion, that the sought design stability class, cd, is a function of the 
mean wind speed U, the component load response li and the requested confidence level cl: cd = cd(U, li, 
cl). Adopting a 98% confidence level, the design stability class is thus described by the hyper-plane 
defined by cl = 0.98. 
For the blade loading, it is straight forward to use the approach derived in section 7.2.1 to derive the 
sought design stability class. Since the tower loading is represented by two sensors, derivation of a 
design stability class is slightly more involved. For an unambiguous derivation, a complete consistence 
among the involver load sensors is required. This is seldom the case. To the degree that sensor-
dependent design stability classes result, one option is to take a conservative approach ensuring that all 
design driving sensors adapt at least to the required confidence level. For this to be meaningful the 
relevant component design loads must respond in a reasonable coherent manner on the ABL stability 
measure, meaning that these are predominantly monotonic in the stability measure and furthermore 
with identical sign of the load gradient with respect to this stability measure. This is the case for the 
investigated tower sensors, and taking this approach for the tower loading our findings can be 
summarized into the recommendations given in Table 14. 
 
Table 14:  Design stability class conditional on mean wind speed, spacing and turbine component. 

Wind 
speed  
[m/s] 

3D 5D 8D 
Blade (cd) Tower 

(cd) 
Blade (cd) Tower (cd) Blade (cd) Tower 

(cd) 
4 -2 -2 -2 -2 -2 -1 
6 -2 -2 -2 -2 -2 -2 
8 -2 -2 -1 -2 -2 -2 
10 3 -2 3 -2 3 -2 
12 3 -2 3 -2 3 -2 
14 3 -2 3 -2 3 -2 
16 2 -2 2 -2 2 -2 
18 2 -2 2 -2 3 -2 
20 2 -2 2 -2 2 -2 
22 2 -2 2 -2 2 -2 
24 1 -1 1 -1 1 -1 

 

In conclusion we conjecture, as already mentioned in section 7.2.2, there is no reason to believe, that 
the relative impact of stability should vary significantly with topology. This conjecture is supported by 
the derived design stability classes in Table 14 being (almost) spacing independent. It is finally notable 
that none of the derived design stability classes are the neutral case, although this stability conditions is 
approached for very large wind speeds. 
 

 
 



8 Summary of project achievements 
The project has created a new basis for further development and optimization of WT’s designed for WF 
operation. This has been accomplished through developing of more realistic modelling of WF flow 
fields as well as of such fields interactions with WT’s under non-neutral ABL stability conditions. On 
this basis a verified model complex for prediction of structural loads as well as production losses for 
WT’s operating in WF conditions, which takes into account the effects from ABL stability conditions, 
is established. Thereby the way to increased reliability and cost efficiency of future WT’s as well as to 
more precise prediction of the WF power output is paved.  
To detail the above mentioned we list below a selection of specific achievements: 

• The classic M-O theory is extended to altitudes relevant for modern WT’s. Besides 
impacting stability classification this may also have a significant influence on simulated 
fatigue loading of rotating WT components, where the periodic deterministic loading caused 
by wind shear often is the dominating factor. For details we refer to section 2 as well as to 
section 7;   

• Initial studies using the DWM approach under non-neutral ABL conditions was limited by 
the lack of a consistent kinematic model for turbulence modeling under such stability 
conditions, and the Mann spectral tensor, although developed for neutral conditions, was 
used in an approximate manner to cover also non-neutral conditions. This shortcoming has 
been overcome by the development of buoyancy dependent spectral tensor, whereby ABL 
stability effects can be consistently accounted for within the framework of the DWM model. 
For details we refer to section 3 as well as to section 5; 

• Using high-fidelity LES computations, two approaches for non-neutral turbulence modeling 
– the precursor and the forced boundary layer method – have been explored and compared. 
More work is needed to obtain mutually consistent results. For details we refer to section 3; 

• Validation of a fundamental wake stability conjecture, which links the DWM approach with 
non-neutral ABL stability conditions. For details we refer to section 3; 

• Investigation and quantification of the influence from the presence of a WF on the large 
turbulent eddies that dictates the wake meandering. For details we refer to section 4;  

• Demonstrated that stationary flow field models suffice for WF production predictions. For 
details we refer to section 5; 

• A new and more accurate DWM wake superposition algorithm has been devised for above 
rated wind speeds. For details we refer to section 5; 

• Demonstrated that ABL stability effects can explain a significant part of the large 
measurement scatter observed in full-scale data from the Lillgrunden WF. For details we 
refer to section 5; 

• Demonstrated that an individual pitch controller is superior to the traditional base line 
controller for WT’s operating in WF’s. For details we refer to section 6; 

• Demonstrated that wind shear is the dominating fatigue load generating factor for rotating 
components of WT operating under stable ABL conditions in WF’s. For details we refer to 
section 7;  

• Devised a simplified IEC consistent design procedure including ABL stability aspects. For 
details we refer to section 7.  
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Appendix A 

Use of observed fluxes to drive the buoyant spectral tensor-model 
  



Because many wind projects lack high-frequency turbulence measurements – or if there are sonic 
anemometers onsite, only 10- or 30-minute mean values are stored – it is not possible in these cases to 
calculate observed spectra of turbulent velocity components or fluxes. Thus, the wind engineer cannot 
fit the buoyant spectral-tensor model parameters to spectra by the method shown above and in [13]. As 
an alternative, we exploit the analytically prescribed behaviour of the eddy lifetime within the spectral-
tensor model [9], along with classic spectral scaling of turbulent heat flux, to derive4

The Mann-model’s eddy lifetime basis 

 an approximation 
for the two buoyancy-related model parameters (Ri and 𝜂𝜃).  

𝜏(𝑘) ∝ 𝛤(𝑘𝐿)−2 3⁄ (𝑑𝑈 𝑑𝑧⁄ )−1 (A.1) 

 and its related integral energy relation [9] can be used to relate the prescribed model parameters 
�𝛤, 𝐿,𝛼𝜀2 3⁄ � to the model-implied shear 𝑑𝑈 𝑑𝑧⁄ .1  

Then, with the spectral scaling 〈𝑤𝜃〉 ∝ 𝜀𝛤�𝜂𝜃 𝜃 𝑔� , an expression for the model’s dimensionless 
destruction rate of temperature variance emerges: 

𝜂𝜃  ∝ �𝑔
𝜃
〈𝑤𝜃〉
𝜖Γ
�
2

.  (A.2) 

An analogous estimate can also be derived in terms of the variance of temperature 〈𝜃2〉, but this is 
more difficult to use and calibrate, because sonic anemometers often have significant amounts of noise 
in the inertial range towards the highest frequencies; therefore we employ the expression above.  
Further, using the definition of gradient Richardson number with the model-implied shear, one arrives 
at an expression for the model’s Richardson number, 

Ri ≈ −𝑔
𝜃0

〈𝑤𝜃〉
𝑐ℎ𝐾ℎ

2𝐿4 3⁄

3𝛼𝜖2 3⁄ Γ
  ;  (A.3) 

Here the implied eddy-diffusivity for heat flux was obtained via the mean flux-gradient relation 
〈𝑤𝜃〉 = −𝐾ℎ (d𝑇 d𝑧)⁄  and the definition of temperature-variance destruction rate, expressible as 

𝐾ℎ = 4
9
𝜂𝜃 �

𝑔 𝜃0⁄
Ri

𝐿4 3⁄

𝛼𝜖2 3⁄ Γ4
�
2
.  (A.4) 

In order to check these relations, we utilize data from the Horizontal Array Turbulence (‘HATS’) 
experiment [41], which consisted of five sonic anemometers mounted at one height and spaced evenly 
in the cross-wind direction, and another row of nine sonic anemometers mounted at a different height 
and evenly spaced, such that the row endpoints were at the same position (y) for both rows. There were 
4 different configurations of the anemometers, whereby each row was at a height between 3m and 8m 
above ground.  The HATS site was flat and relatively uniform [41], thus allowing for a good surface-
layer test of our model; more importantly, the dataset facilitates checking the ‘translation’ of measured 
stability parameters to model parameters, in somewhat ideal conditions.     
 
 
 
                                                 
4 The fully-detailed derivation is in preparation for publication, so only the basic (useful) derivation/results are reported here, and thus the 
exact expression is pending.  



First, from the HATS data we check the stability-influenced behaviour of measured fluxes, to gauge 
both how the measured gradients can be ‘converted’ to fluxes and also how well surface-layer (Monin-
Obukhov) theory characterizes the data. This is shown in Fig. A1, where the ratio of heat flux predicted 
by M-O theory 

𝐾ℎ(𝑑𝑇 𝑑𝑧⁄ ) = 𝜅𝑢∗𝑧[𝜙ℎ(𝑧 𝐿⁄ )]−1(𝑑𝑇 𝑑𝑧⁄ ) 

                                                                      = (𝜅𝑧)2(𝑑𝑇 𝑑𝑧⁄ )(𝑑𝑈 𝑑𝑧⁄ )�𝜙ℎ(𝑧 𝐿⁄ )𝜙𝑚(𝑧 𝐿⁄ )�−1                                                               
(A.5) 

to measured flux is plotted versus temperature gradient. Figure A1also shows the dimensionless MOST 
diffusivity (normalized by neutral/ASL theory diffusivity) versus stability (−𝑧 𝐿⁄ ).  The figure shows 
that the flux-gradient relation implied by MOST holds relatively well for stable conditions and most 
unstable cases, but for near-neutral and some unstable conditions there is more non-ideal behavior 
which is not handled well by surface-layer theory.  

 
Figure A.1: Left: Ratio of M-O estimated heat flux via flux-gradient relation versus dT/dz; 
dashed line is M-O theory.  Right:  diffusivity normalized by surface-layer (ideal neutral) 

diffusivity scale (𝜿𝒖∗𝒛), versus stability (−𝒛/𝑳); solid line is M-O theory. 

The HATS data do indicate for stable conditions, however, that a reasonable flux-gradient relation 
exists, not far from similarity theory (MOST). Thus it is possible to estimate 𝜂𝜃 and Ri, based on (A.2) 
and (A.3) along with the measured heat flux and the parameters {𝐿, 𝜀,𝛤} obtained from spectral fitting. 
Assuming a ‘perfect fit’ for the latter parameters, then one can compare the {𝜂𝜃, Ri} obtained from 
spectral-fitting to that predicted via (A.2–3); this is shown in Fig. A.1. The plots show an 
approximately linear relationship, roughly 1:1, which supports the use of equations (A.2–3). 

 
  



 

 

 

 

 

 

 

Appendix B 

Closed form solution of roughness length matching shear power exponent 
  



In this appendix a closed form solution to equation (5.2.6) is provided. Starting point is the functional 
expressed in equation (5.2.5). Stationary values of this functional is obtained by solving the equation 
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However, this equation is somewhat easier to solve analytically when using the following 
reformulation 
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As the roughness length in practice is always larger than zero, eq. (B.2) may be simplified as 
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The left hand side of this equation is given by 
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with 
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The solution to eq. (B.3) may thus be found as 
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Appendix C 

Turbulence spectra 
  



 

 
Figure C.1: Comparison of the used conventional turbulence spectra with the Kaimal reference 
spectrum (ti=6%). The “raw” box spectrum is plotted together with rescaled turbulence using 

respectively 1) turbulence intensity based and 2) “factor” based scaling.  
Top: u-component; Bottom: v-component. 



 

 
Figure C.2: Comparison of the used neutral conventional turbulence spectra with the Kaimal 
ref. spectrum (ti=6%). The “raw” box spectrum is plotted together with rescaled turbulence 

using respectively 1) turbulence intensity based and 2) “factor” based scaling.  
Top: u-component; Bottom: v-component. 



 

 
Figure C.3: Comparison of the used stable conventional turbulence spectra with the neutral 

Kaimal reference spectrum (ti=6%). The “raw” box spectrum is plotted together with rescaled 
turbulence using respectively 1) turbulence intensity based and 2) “factor” based scaling.  

Top: u-component; Bottom: v-component. 
 

 



 
Figure C.4: Comparison of the used stable meandering turbulence spectra with the neutral 

Kaimal reference spectrum (ti=6%). The “raw” box spectrum is plotted together with rescaled 
turbulence using respectively 1) turbulence intensity based and 2) “factor” based scaling.  

Top: u-component; Bottom: v-component. 
 



 

 
Figure C.5: Comparison of the used unstable conventional turbulence spectra with the neutral 
Kaimal reference spectrum (ti=6%). The “raw” box spectrum is plotted together with rescaled 

turbulence using respectively 1) turbulence intensity based and 2) “factor” based scaling. 
Top: u-component; Bottom: v-component. 

 



 

 
Figure C.6: Comparison of the used unstable meandering turbulence spectra with the neutral 

Kaimal reference spectrum (ti=6%). The “raw” box spectrum is plotted together with rescaled 
turbulence using respectively 1) turbulence intensity based and 2) “factor” based scaling. 

Top: u-component; Bottom: v-component. 
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