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1 Preface

This report contains the results of the EUDP funded project “Aeroelastic Optimization of MW
Wind Turbines” (AeroOpt) that has been running from April 2009 to October 2011 in part-
nership between the Aeroelastic Design Programme in the Wind Energy Division of Risø DTU
and the Fluid Mechanics Section of the Department of Mechanical Engineering (MEK) at DTU.
The project also included four industrial partners SiemensWind Power A/S, Vestas Wind Sys-
tems A/S, DONG Energy A/S, and LM Wind Power A/S, which have contributed with inputs
on the applicability of the research and with relevant questions and suggestions to the work at
two Aeroelastic Workshops both with over 30 external participants and two Steering Commit-
tee meetings by the key academic and industrial persons.

The main goal of this project was to ensure the continuous development and improvement of
the aeroelastic design complex and hereby contribute to a direct optimization to the industrial
development in general. At Risø DTU and DTU MEK the aeroelastic design complex has been
developed and demonstrated in cooperation with the industry in different areas such as; Com-
putational Fluid Dynamics (CFD), aeroelasticity, aerodynamics, structural dynamics, stability,
airfoil and rotor optimization, design optimization and controls. These research areas have
been developed partly through a series of EFP-funded projects called ”Aeroelastic Research
Programme” started in 1997, and have contributed to aid the industry analyze and develop
their turbines. Continued development with focus on implementation of the tools is needed to
achieve an effective exploitation of the complete aeroelastic design complex and to extend the
high competence level in both Danish research institutes and Danish wind turbine industry in
a dynamic interaction. The highest prioritized research areas and associated tool development
have been condensed into five Work Packages of this project:

1 Geometric non-linear, anisotropic beam element for HAWC2
The purpose of this work has been to develop two new types of elements; an
anisotropic one that can handle the anisotropic material properties of composite struc-
tures important for accurate modeling of blades, and a nonlinear one that can be used
for modeling of mooring lines and other cables and chains without bending stiffness.
The results of these works are described in details in Sections 3 and 4.

2 Closed-loop eigenvalue analysis of controlled wind turbines
The purpose of this work has been to develop and demonstrate the possibilities of
closed-loop aero-servo-elastic eigenvalue analysis for the design and tuning of wind
turbine controllers, and for an extended stability analysis of wind turbines under op-
eration. The results of this work are described in details inSection 5.

3 Resonant wave excitation of lateral tower bending modes
The purpose of this work has been to estimate and develop methods for prediction
of the total aero-hydro-elastic modal damping of the lateral tower bending mode,
which in simulations is known to be excited in resonance withwave loads. Accurate
predictions of the total lateral tower mode are important for accurate predictions of
the resonant response that may determine the design loads. The results of this work
are described in details in Section 6.

4 Development of next generation aerodynamic design tools
The purpose of this work has been to develop improved sub-models that can be di-
rectly implemented into existing BEM based design codes in industry based on the
results of the recent large scale experiment DANAERO, and a completely new aero-
dynamic model for performance and load predictions based ona coupling of a vortex
line method for rotor blade aerodynamics with 2-D and quasi 3-D viscous-inviscid
interaction models. The results of this work are described in details in Section 7.
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5 Advanced design and verification of airfoils
The purpose of this work has been twofold: 1) Design and verification of airfoils
with thicknesses from 30 % to 50 % of the chord length for use onthe inner part
of wind turbine rotors with a focus on high aerodynamic efficiency, high roughness
insensitivity and high maximum lift and 2) Design and verification of an airfoil with
thicknesses around 15 % of the chord length, with the objective of high aerodynamic
efficiency, high roughness insensitivity, insensitivity to transition point positions due
to inflow turbulence and low noise emission. The results of these works are described
in details in Sections 8, 9 and 10.

Besides the full description of the results in the subsequent sections, many results of the project
have been published in journals and proceedings:

• Hansen, M. H. (2011), ”Aeroelastic properties of backward swept blades”, InProceedings
of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, 4 - 7 January 2011, Orlando, Florida.

• Hansen, M.O.L., Madsen, H.Aa., 2011, ”Review paper on wind turbine aerodynamics”,
Journal of Fluids Engineering, vol.133(11), pp. 114001.

• Kallesøe, B. S. and Hansen, A. M. (2011), ”Dynamic mooring line modeling in hydro-aero-
elastic wind turbine simulations”, InProceedings of the 21st International Offshore and
Polar Engineering Conference, Maui, Hawaii, p. 375-382, 2011.

• Kim, T., Branner, K., and Hansen, A. M. (2011), ”Developing Anisotropic Beam Element
for Design Composite Wind Turbine Blades”, InProceedings of the 18th International
Conference on Composite Material, Jeju, Korea, 21-26 August, 2011.

• Kim, T., Branner, K., and Hansen, A. M. (2011), ”AnisotropicBeam Element for Modeling
of the Wind Turbine Blades,” InProceedings of the European Wind Energy Association
Conference 2011, Brussels, Belgium, 14-17 March, 2011.

• Kim, T., Buhl, T., and Bak, C. (2010), ”Development of Wind Turbine Blade Optimization
Tool for Enhancing the Performance,” InProceedings of the The Science of making Torque
from Wind 2010, Crete, Greece, 28-30 June, 2010.

• Kim, T., Bak, C., and Buhl, T. (2011), ”Optimization of the Wind Turbine Rotor to Enhance
the Performance,” InProceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structural
Dynamics and Materials Conference, Denver, Colorado, 4-7 April, 2011.

• Madsen, H. Aa., Bak, C., Paulsen, U. S., Gaunaa, M., Sørensen, N. N., Fuglsang, P.,
Romblad, J., Olsen, N. A., Enevoldsen, P., Laursen, J. and Jensen, L. (2010), ”The DAN-
AERO MW Experiments”. InProceedings of the 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, 4 - 7 January 2010, Or-
lando, Florida.

• Sørensen, J.N. (2011), ”Aerodynamic aspects of wind energyconversion”, Annual Review
of Fluid Mechanics, vol. 43, pp. 427-448.

• Sørensen, J.N. (2011), ”Instability of helical tip vortices”, Journal of Fluid Mechanics, vol.
682, pp. 1-4.

• Yang, H., Shen, W.Z., Sørensen, J.N. and Zhu, W.J. (2011), ”Extraction of airfoil data using
PIV and pressure measurements”, Wind Energy, vol. 14, issue4, pp. 539-556.

• Zhu, W.J., Shen, W.Z. and Sørensen, J.N. (2011), ”High-order numerical simulations of
flow-induced noise”. Int. Journal for Numerical Methods in Fluids, vol. 66, issue 1, pp.
17-37.

• Zahle, F., Gaunaa, M., Sørensen, N. N., and Bak, C. (2012), ”Design and Wind Tunnel
Testing of a Thick, Multi-Element High-Lift Airfoil”, Submitted for the Annual European
Wind Energy Association Conference 2012
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The presentations from the two Aeroelastic Workshops have been published in the following
reports (available from www.vindenergi.dtu.dk):

• Hansen, M. H. (Editor), ”Presentations from the Aeroelastic Workshop - latest results from
AeroOpt”,Risø-R-1769(EN), February 2011, Roskilde.

• Hansen, M. H. (Editor), ”Presentations from the Aeroelastic Workshop 2 - latest results from
AeroOpt”,Risø-R-1796(EN), October 2011, Roskilde.
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2 Summary

Here is a short summary of the results from each milestone:

1 Geometric non-linear, anisotropic beam element for HAWC2
A new beam element has been developed to model the anisotropic structures pro-
duced by layered materials based on a cross-sectional stiffness matrix provided by a
pre-processor e.g. BECAS, or VABS. The element is validatedwith known test cases
for both static and dynamic responses. Another nonlinear bar element has been im-
plemented to model mooring structures. The bottom contact is handled by a set of
springs and dampers in each node with varying properties dependent on its distance
to the bottom. Individual line systems are connected by use of a series of constraints.

2 Closed-loop eigenvalue analysis of controlled wind turbines
A linear aero-servo-elastic state-space model of a wind turbine operating at a given
operating point defined by constant wind speed, rotor speed and pitch angle has been
developed for open- and closed-loop aero-servo-elastic eigenvalue and frequency-
domain analysis. The applications of this tool called HAWCStab2 are: closed-loop
stability analysis, controller tuning based on poles placement and frequency response
design, and derivation of linear first-principle reduced order models for model-based
controllers. Examples of the two former applications are given in this report.

3 Resonant wave excitation of lateral tower bending modes
The aerodynamic damping of lateral tower vibrations have been estimated by 3D CFD
and unsteady BEM models. A good comparison between the two models with very
different complexity supports the continuous use of unsteady BEM for aerodynamic
modeling of wind turbine dynamics. Generator torque control has furthermore been
used to add active damping to the lateral tower vibrations reducing the tower fatigue
load by 40 % with the cost of only 10 % increase in drivetrain fatigue load. Yaw slip
can also be used to damp out excessive lateral tower vibrations if the distance from
the yaw axis to the center of gravity of the nacelle-rotor structure is sufficiently large.

4 Development of next generation aerodynamic design tools
A viscous-inviscid model for predicting the aerodynamic behavior of airfoils subject
to steady and unsteady motions has been developed. The inviscid part is modeled us-
ing a panel method whereas the viscous part is modeled using the integral form of
the laminar and turbulent boundary layer equations, including a quasi-3D approach
to include rotational effects. A design and optimization code based on a lifting line
method coupled with a Lagrange multiplier approach has beenpresented. The circu-
lation distribution which minimizes the induced loss is found, and the blade geometry
is consequently derived using 2-D airfoil data.

5 Advanced design and verification of airfoils
The validation of the predictive capability of EllipSys2D for flatback airfoils indicated
that the drag can be captured for these airfoils. In all 2D cases, the steady state results
are closer to the measured lift than the unsteady results. CFD can be used to compare
the quality of different flatback designs. The investigation of using slats to improve
the performance of this airfoils concluded that lift coefficients of above 3.0 can be
achieved for a 40 % flatback airfoil fitted with a 30 % chord leading edge slat with a
stall angle of approximately 24 deg. The multi-element airfoil design was validated in
an extensive wind tunnel campaign and comparisons between the experimental results
and computations showed good agreement.
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3 Anisotropic beam element

Author: Taeseong Kim

This chapter deals with the development of anisotropic beamelement. It is shown that a typical
wind turbine blade has very small couplings, but that these can be introduced by adding angled
unidirectional layers [1]. However, aeroelastic codes in the wind energy field, such as HAWC2,
use the classical beam model. Therefore such codes cannot beused to investigate the coupling
effects of anisotropic materials.

The main aims of the present chapter are to develop a new beam element for the anisotropic
structures, to implement the beam element into HAWC2, and toinvestigate a structural cou-
pling effect.

3.1 Methods

Finite Element Analysis (FEA) is considered to compute a newbeam element. Fig. 3.1 shows
a sketch of the coordinate system of the considered beam element.

Figure 3.1. A sketch of the coordinate system

In order to compute element stiffness and mass matrix, the elastic energy and the kinetic energy
of the beam are considered. Eq. 3.1 and Eq. 3.2 show the final form of the elastic and the kinetic
energy of the beam element. More detailed expressions of theequations are addressed in [2].

U =
1
2

∫ L

0
εTSεdz (3.1)

=
1
2

dTN T
α

[∫ L

0
BTSBdz

]
Nαd

=
1
2

dTKd

T =
1
2

∫ L

0
ṙTEṙdz (3.2)

=
1
2

ḋTN T
α

[∫ L

0
NTENdz

]
Nαḋ

=
1
2

ḋTMḋ

whereU is the elastic energy,ε is the generalized strains, superscriptT is transpose,S is the
cross-sectional stiffness matrix,d is nodal degrees of freedom,N is the polynomial matrix,B is
the strain-displacement matrix,K is the element stiffness matrix, ˙r is the velocity of the body,
E is the cross-sectional mass matrix, andM is the element mass matrix.
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3.2 Results

Three different cases are investigated to validate the new beam element model. The effect of
using an anisotropic material is studied as well. Fig. 3.2 shows a sketch of the considered cases.

(a)

(b)

(c)

Figure 3.2. A sketch of considered cases. (a) Case1: [0◦]T layup with arbitrary isotropic
material, (b) Case 2: [30◦]T layup with Graphite/Epoxy, (c) Case 3: [45◦/0◦]3S layup with
Graphite/Epoxy

Table. 3.1 shows the detailed structural properties and cross-sectional stiffness matrix for the
first example. For Case 2 and Case 3, only sectional stiffnessinformation is displayed in
Table. 3.2. More detailed information about the material properties and geometries is addressed
in [3] and [4]. Case 1 is used for validating whether the new beam model is correctly imple-
mented into HAWC2 or not. The other two cases are used for the comparisons between new
HAWC2 computation with anisotropic material and the other existing results obtained from [3]
and [4].

10 Risø–R–1803(EN)



Table 3.1. Structural properties of Case 1 [5]

Material Arbitrary material
E11, E22, E33 100Pa
G12,G13,G23 41.667Pa
ν12,ν13,ν23 0.2

ρ 1kg/m3

Width 0.1m
Height 0.1m
Length 7.5m

Sectional stiffness of Case 1

S11, S22 3.4899×10−1(N)

S33 1(N)

S44, S55 8.3384×10−4(Nm2)

S66 5.9084×10−4(Nm2)

Table 3.2. Sectional stiffness of Cases 2 and 3

Stiffness of Case 2 [3] Stiffness of Case 3 [4]

S11 4.4702400×105(N) S11 4.1673312×105(N)

S13 5.6667520×105(N) S13 −2.070544×105(N)

S22 3.8404032×104(N) S22 3.0237504×104(N)

S33 1.5861568×106(N) S33 3.6099968×106(N)

S44 0.1313736×101(Nm2) S44 5.314632×10−1(Nm2)

S46 −9.225995×10−1(Nm2) S46 9.894628×10−2(Nm2)

S55 1.1656606×101(Nm2) S55 2.634072×102(Nm2)

S66 0.1454637×101(Nm2) S66 3.584220×10−1(Nm2)

3.2.1 Eigenvalue analysis

Eigenvalue analysis is performed for the three different cases. Table. 3.3 shows the natural fre-
quency comparisons of Case 1 between the new beam element before being implemented in
HAWC2 and after implementation, respectively. They are completely identical because they
are using same shape functions and same number of elements. From this result, it may be con-
cluded that the new beam element is successfully implemented into HAWC2.

Table. 3.4 shows the natural frequency comparisons betweenthe other existing results and a
HAWC2 computation. The HAWC2 result shows good agreement with [3] and [4], respec-
tively.

Small discrepancies in Cases 2 and 3 of Table. 3.4 might occurdue to converting the units from
English to SI units and using different shape functions.

It is clear to see that flapwise bending-torsion, (S46), and axial-edgewise deflections, (S13), are
coupled on the structure of Cases 2 and 3 from Table. 3.2. The coupling effects on the structure
can be captured through the mode shape analyses. Fig. 3.3 shows the first 6 mode shapes of
Case 2. From the mode 1, 3, 4, and 6 it is shown that the flap related modes (uy andθx) are
coupled with the torsion related mode (θz). Fig. 3.4 shows the first 6 mode shapes of Case 3.
It is observed by mode 1, 2, 3, 5, and 6 that the flap related modes are also coupled with the
torsion related mode.

From the above results of natural frequencies and mode shapes the new beam model can cap-
ture the physical behaviors of structural coupled characteristics.

An additional eigenvalue analysis is performed with Cases 2and 3 in order to investigate physi-

Risø–R–1803(EN) 11



Table 3.3. Natural frequency comparison of Case 1

Mode New beam element only [Hz] HAWC2 [Hz]

1 2.87262×10−3 2.87262×10−3

2 2.87262×10−3 2.87262×10−3

3 1.80466×10−2 1.80466×10−2

4 1.80466×10−2 1.80466×10−2

5 5.09409×10−2 5.09409×10−2

6 5.09409×10−2 5.09409×10−2

Table 3.4. Natural frequency comparison of Cases 2 and 3

Case 2 Case 3
Mode HAWC2 [Hz] Ref.[3][Hz] Mode HAWC2 [Hz] Ref.[4][Hz]

1 (flap-torsion) 52.5 52.6 1 (flap-torsion) 4.66 4.66
2 (edge) 209.7 209.8 2 (flap-torsion) 29.18 29.60

3 (flap-torsion) 326.1 326.3 3 (flap-torsion) 81.57 84.89
4 (flap-torsion) 899.3 899.8 4 (edge) 105.99 N/A

5 (edge) 1284.2 1284.9 5 (flap-torsion) 113.35 113.43
6 (flap-torsion) 1660.9 1661.3 6 (flap-torsion) 159.52 N/A

cal differences between isotropic and anisotropic structures by using the old version (i.e. before
implementing the new beam model) and the new version (i.e. after implementing the new beam
model) of HAWC2. In order to produce an isotropic structure case, the off-diagonal terms from
the anisotropic structural property are removed, which does not offer equivalent conditions.
However, these comparisons may be helpful for understanding the physical importance of the
off-diagonal terms.

Table. 3.5 shows the natural frequency differences betweenthe isotropic and the anisotropic
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Figure 3.3. First 6 mode shapes of Case 2 with anisotropic properties
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Figure 3.4. First 6 mode shapes of Case 3 with anisotropic properties

model of Cases 2 and 3. It is obvious that the obtained naturalfrequencies from isotropic
model are overpredicted as compared with anisotropic’s one. It is because the isotropic model
does not have the abilities to capture the coupling effects.

Table 3.5. Natural frequency comparison of Cases 2 and 3

HAWC2 simulation of Case 2
Mode Anisotropic [Hz] Mode Isotropic [Hz]
1 (FT) 52.5 1 (F) 70.5
2 (E) 209.7 2 (E) 210.0
3 (FT) 326.1 3 (F) 436.1
4 (FT) 899.3 4 (F) 1196.6
5 (E) 1284.2 5 (E) 1296.5
6 (FT) 1660.9 6 (F) 1675.0

HAWC2 simulation of Case 3
Mode Anisotropic [Hz] Mode Isotropic [Hz]
1 (FT) 4.66 1 (F) 4.78
2 (FT) 29.18 2 (F) 29.97
3 (FT) 81.57 3 (F) 83.81
4 (E) 105.99 4 (E) 106.01
5 (FT) 113.35 5 (T) 113.34
6 (FT) 159.52 6 (F) 163.95

In Table. 3.5, FT is flap-torsion mode, E is edge mode, F is flap mode, and T is torsion mode.

Fig. 3.5 and Fig. 3.6 show the mode shapes of Cases 2 and 3 with an isotropic structure, re-
spectively. As expected no coupled modes are observed.
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Figure 3.5. First 6 mode shapes of Case 2 with isotropic properties
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Figure 3.6. First 6 mode shapes of Case 3 with isotropic properties

3.2.2 Static analysis

A static analysis is performed with Cases 2 and 3. A cantilevered graphite-epoxy beam is con-
sidered. Fig. 3.7 shows a sketch of the cantilevered beam with static load and torsional moment.
For the Case 2, 4.45N static load is applied. For the Case 3, 0.113Nmstatic torsional moment
is applied.

The static deflections and rotations of Case 2 are presented in Fig. 3.8. In the figure, the dashed
line and solid line represent anisotropic and isotropic results, respectively. As we have already
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Figure 3.7. A sketch of the cantilevered graphite-epoxy beam

shown, flapwise bending-torsion and axial-edgewise deflection are coupled on the structure.
Therefore, when the static load is applied to the flapwise direction not only additional flap-
wise deflection but also additional flapwise bending which also results in torsion is produced.
From the results, the expected characteristics are observed with the new beam element while
the isotropic model cannot capture the effects.

Fig. 3.9 shows a comparison of the static deflections and rotations of Case 3. This case has
the same couplings as Case 2. Therefore, when the torsion is applied to the structure, not only
additional torsion but also additional flapwise bending which also results in flapwise deflection
should be captured. From the results the new beam element captures the expected physical be-
havior correctly while the isotropic model does not.

As we have investigated above there are differences betweenisotropic and anisotropic results
from natural frequencies, mode shapes, static deflections,and static rotations. They are impor-
tant parameters when designing wind turbines. In that sense, the anisotropic behavior should
be included in the relevant aeroelastic numerical tool if the blades have structural couplings.
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Figure 3.8. Differences of the displacements and rotationsbetween anisotropic and isotropic
properties for Case 2
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Figure 3.9. Differences of the displacements and rotationsbetween anisotropic and isotropic
properties for Case 3

3.2.3 A parametric study for a blade bending-torsion coupling effect

In this section a blade bending-torsion coupling effect is examined in order to investigate a load
reduction potential by considering the structural couplings. For this study, the NREL 5MW Ref-
erence Wind Turbine (RWT) is considered [6]. To produce the 6by 6 cross sectional stiffness
matrix the same values used for the old version of HAWC2 are applied. Eq. 3.3 shows how the
new cross sectional values for the new beam element are obtained with the existing sectional
data.

S11= kxGA, S22 = kyGA, S33 = EA, S44= EIx, S55= EIy, S66= GJ (3.3)

wherekx andky represent shear factor for x and y direction,G andE represent shear and elastic
modulus,A represents cross sectional area,Ix, Iy, andJ represent area moment of inertia with
respect to x- and y- axis, and torsional stiffness constant,respectively.
Table. 3.6 shows the natural frequency comparison of 5MW RWTusing the old version (i.e.
before implementing the new beam model) and the new version (i.e. after implementing the
new beam model) of HAWC2. All frequencies obtained show goodagreement.
Structural couplings are arbitrarily assigned based on Eq.3.4 [7]. This equation shows that di-
agonal stiffness terms are kept its own values while coupling effects (off-diagonal terms) are
assigned. In this study only a blade flapwise bending-torsion coupling is considered.

S=




S11 0 0 0 0 0
0 S22 0 0 0 0
0 0 S33 0 0 0
0 0 0 S44 0 SBT

0 0 0 0 S55 0
0 0 0 SBT 0 S66




(3.4)

where SBT illustrates the coupling term represented as

SBT = α
√

EIx×GJ, −1< α < 1 (3.5)
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Table 3.6. 5MW RWT Natural frequency comparison

Whole turbine natural frequency Blade natural frequency
Mode Old version New version Mode Old version New version

1 2.99499E−01 2.99489E−01 1 6.42915E−01 6.42126E−01
2 3.01766E−01 3.01745E−01 2 9.70733E−01 9.70323E−01
3 5.88521E−01 5.88366E−01 3 1.74780E+00 1.74320E+00
4 6.10445E−01 6.09750E−01 4 2.81604E+00 2.81413E+00
5 6.36840E−01 6.36079E−01 5 3.52602E+00 3.52027E+00
6 6.67130E−01 6.66403E−01 6 4.74572E+00 4.74129E+00
7 9.66966E−01 9.66564E−01 7 5.41973E+00 5.41629E+00
8 9.78581E−01 9.78093E−01 8 6.62254E+00 6.61381E+00
9 1.58169E+00 1.57891E+00 9 7.41935E+00 7.42257E+00
10 1.69090E+00 1.68696E+00 10 8.24123E+00 8.21291E+00

The amount of couplings is assigned byα. A bending-torsion coupling that is 1m flapwise
bending deflection (toward tower) resulting in approximately 0.3deg twist (toward feather) at
the blade tip is considered:α = −0.05. Fig. 3.10 shows the static deflections and rotations of
considered example.

Figure 3.10. The static deflections and rotations of the coupled beam whenα =−0.05

A single wind speed case, 7 m/s, is considered with 22% turbulence intensity. Fig. 3.11 shows
the blade equivalent fatigue loads and maximum blade tip deflection. The blade flapwise, edge-
wise, and torsional equivalent fatigue loads, and the blademaximum tip deflection are reduced
up to approximately 2.5%, 0.5%, 10%, and 8%, respectively without losing mechanical power
production (Fig. 3.12).
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Figure 3.11. Equivalent fatigue loads and maximum tip deflection whenα =−0.05
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Figure 3.12. Mechanical power whenα =−0.05

3.3 Conclusion

In this chapter a new beam element, which is able to consider the anisotropic behaviors, is
developed and implemented into HAWC2. Validations for the beam model are performed with
3 different cases. The eigenvalue and the static analyses are performed. From the results the
anisotropic characteristics show different behaviors compared to the isotropic ones. A para-
metric study to investigate a structural coupling has been performed with the 5MW RWT. Only
a blade flapwise bending-torsion coupling is considered. When the structural coupling which
produces 0.3deg twist at the blade tip toward feather for a 1mflapwise tip deflection towards
the tower is considered the blade flapwise, edgewise, and torsional root equivalent fatigue loads
are reduced up to 2.5%, 0.5%, and 10% respectively. Also, blade tip clearance is improved ap-
proximately 8% without power reduction. This results show apotential to improve turbine
performance by considering a small amount of structural coupling on the structure. This ad-
ditional effect may be used for developing new types of blades such as blades with less pitch
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4 Detailed and reduced models of dynamic

mooring system

Author: Anders M. Hansen and Bjarne S. Kallesøe

4.1 Introduction

The first part of this chapter deals with the effect of different levels of details in mooring line
model on wind turbine loads in hydro-aero-elastic simulations of floating wind turbines. In
wind turbine load simulations, it is common to use a quasi-static approach in mooring line
models. In this work, a dynamic mooring line model is developed and coupled to a state of
the art hydro-aero-elastic wind turbine simulation code. The effect of the dynamic mooring
line modeling on the wind turbine loads are analyzed and compared to results from a quasi-
static modeling approach. It is found that the dynamic mooring line model doesn’t affect the
blade extreme or fatigue loads, nor does it affect the tower extreme loads, but the tower bottom
bending equivalent load is reduced by 5-20 % in some load cases and the equivalent lifetime
load is reduced by 5-10 %. The reductions indicate that the dynamics off the mooring system
is significant and should be included in the simulation modelof the floating wind turbine to get
the right design loads.

The second part of this chapter describes a method that can beused to derive an equivalent
model as a set of first order ODEs which captures the dynamics of mooring systems.

4.2 Detailed model

The offshore wind turbine development has focused on bottomfixed concepts, but since the
shallow water sites are limited and many countries only havedeep waters, an increasing interest
has been towards floating wind turbine concepts. For instance Statoil has launched the worlds
first full scale floating turbine HYWIND off the coastline of Norway [1]. Floating turbines
are complex and relatively flexible structures, where all subcomponents depend on each other.
For instance, the turbine loads depend on the motion of the floating platform, and the platform
motion depends on the aerodynamic loading and control of theturbine. The mooring system
is an integrated component for the overall dynamic responseof the full wind turbine structure.
Compared to other offshore installations, such as oil rigs,the low profit from wind turbines
combined with a low risk (small human and environmental threat), floating turbines will be
designed in a low cost framework and with smaller safety factors, all leading to more flexible
and dynamic structures.

In floating wind turbine simulations, it is common to used quasi-static mooring line models [2].
This work will look into the validity of a quasi-static mooring line model approach and analyze
if more complex mooring line models will affect the wind turbine loads.

The comprehensive state of the art hydro-aero-elastic timesimulation code for wind turbines
HAWC2 [3] is extended with a dynamic mooring line model. HAWC2 is an aeroelastic code for
computing loads for onshore, bottom mounted and floating offshore wind turbines. The code
is based on a multi-body formulation, where each body is a linear beam. The wave loading
on the offshore turbine is computed by Morison formula. The code has been used for load
computations of several floating turbines, e.g. the HYWIND turbine, but the mooring forces
has been based on quasi-static lookup tables.

The developed dynamic mooring line model is based on a cable element with hydrodynamic
drag, added mass, and buoyancy forces and a nonlinear springstiffness modelling the bottom
contact. The quasi-static response of the mooring model is validated against the code MIMOSA
from MARINTEK showing good agreement.
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The dynamic mooring line model in HAWC2 enables a fully coupled analysis of the influence
of different mooring line models on wind turbine loads. The setup is used to analyse the effect
of mooring models on a floating turbine of the spar buoy type (HYWIND type). It is found that
the dynamic mooring line modeling doesn’t affect the blade extreme or fatigue loads, nor does
it affect the tower extreme loads, but the tower bottom bending equivalent load is reduced by
5-20 % in some load cases and the equivalent lifetime load is reduced by 5-10 %.

4.2.1 Wind Turbine Modeling

The hydro-aero-elastic simulations are based on the HAWC2 code. The HAWC2 code is in-
tended for calculating wind turbine response in time domain[4].

The structural part of the code is based on a multi-body formulation as described in [5] using
the floating frame of reference method. In this formulation,the wind turbine main structures
are subdivided into a number of bodies where each body is an assembly of Timoshenko beam
elements. The bodies representing the mechanical parts of the turbine are connected by joints
also referred to as constraints. The constraints are formulated as algebraic equations that impose
limitations on the bodies’ motion. The structural model is general, but in its simplest form a
turbine is modeled using one body for the tower, one for the nacelle and one for each blade.
The capability of modeling floating turbines is inherent in the general multi-body formulation,
which does not need to have the modeled structure attached tothe global frame.

The aerodynamic part of the code is based on the blade elementmomentum theory, but ex-
tended from the classic approach to handle dynamic inflow, dynamic stall, skew inflow, shear
effects on the induction and effects from large deflections.The dynamic stall model is a modi-
fied Beddoes-Leishmann model that includes the effects of shed vorticity from the trailing edge
(Theodorsen theory), as well as the effects of stall separation lag caused by an instationary trail-
ing edge separation point [6].

The stochastic wind is generated outside the HAWC2 code. Theturbulence generator is the
Mann model [7], which is a full 3D correlated turbulence flow field. Tower shadow effects are
also a part of the wind module, as it changes the wind conditions locally near the tower.

The hydrodynamic loads are based on the, within offshore technology well-known, Morisons
equation. The wave kinematics are not calculated within theHAWC2 code but provided exter-
nally through a defined DLL (Dynamic Link Library) interface, where the present open source
DLL includes regular and irregular Airy waves.

Buoyancy loads are based on axial dynamic pressures inserted as concentrated forces on end
nodes and distributed forces over conical sections. A perpendicular force contribution is dis-
tributed on angled elements and a restoring moment is distributed on conical sections.

The wind turbine controllers are implemented in external DLL’s and coupled to the code by a
defined DLL interface.

The HAWC2 code is a state of the art hydro-aero-elastic code and has been used for simulating
loads on a variety of wind turbines and wind turbine concepts. The code has participated in the
code-to-code comparison project OC3 [8] with very good results.

The wind turbine used in this work is a conventional MW size upwind variable speed pitch
regulated turbine. The turbine is controlled by Risø’s baseline PID controller [4]. The controller
is modified as discussed in Larsen et al. [4] to handle the inherent controller instability of pitch
regulated floating turbines.
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Figure 4.1. One section of the flexible mooring line with uniform properties divided into N
equal sized elements.

4.2.2 Mooring Line Modeling

Quasi-Static Modeling Approach
The quasi-static mooring line model in HAWC2 is based on pre-computed results from the
MIMOSA code by MARINTEK. The quasi-static mooring line stiffness characteristics are
tabulated as positions of the float versus restoring forces from the mooring system. HAWC2
uses these data for looking up the force from the mooring system that should be applied in each
time step depending on the turbine position.

Dynamic Modeling Approach
The flexible mooring line is model by a general cable element formulation, similar to e.g. [9].

Figure 4.1 shows one section of the flexible line divided intoN equal sized elements. The length
of one loaded element is given by

Ln =
√
(xn−1− xn)2+(yn−1− yn)2+(zn−1− zn)2 (4.1)

and the Green strain measure can then be found by

εG =
L2

n−L2
n,0

2L2
n,0

(4.2)

whereL0 is the length of the unloaded element. Having this strain in the element the longitudi-
nal force in the element can be found by

f = EAεG (4.3)

whereE is Young’s modulus andA is the cross section area. The element stiffness matrix can
then be formulated as

Ke = f/Ln




1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1




(4.4)
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which is nonlinear sinceKe = Ke(xn−1,xn) wherexn = [xn,yx,zn]
T . Inserting this element stiff-

ness matrix in the equations of motion

Ke

[
xn

xn+1

]
=

[
− f δ
f δ

]
, δ =




xn+1−xn
Ln

yn+1−yn
Ln

zn+1−zn
Ln


 (4.5)

so it is seen that it gives the line force projected onto the(x,y,z)-directions.

The equations of motion for one line segment becomes

Mẍ(t)+K(x)x(t)−Fgravity−Fbuoyancy−Fdrag(x, ẋ) = f (4.6)

where the mass matrixM is constant in time and given by integrating the distributedmass
of each element. The stiffness matrixK(x) is a collection of the element stiffness matrices
(4.5) and depends on the deflection and orientation of the element. The gravity forceFgravity

and buoyancy forceFbuoyancyare both computed initially and applied in the downwards and
upwards directions, respectively. A perpendicular and a longitudinal linear viscous drag force
(Fdrag(x, ẋ)) is applied to the element. The drag forces are based on drag coefficients multiplied
by the perpendicular and longitudinal speed of the element,respectively, and projected onto the
(x,y,z)-directions. The drag force depends both on the element velocity and orientation. There
are no wave loading on the elements, but since the mooring is connected to the main structure
at 54 m depth on the particular turbine model, the wave loading is assumed not to be important.

The bottom contact is modeled by a vertical non-liner stiffness applied to each node

fz =

{
0 if z> z0

K
(
(z− z0)

2+(z− z0)
)

if z≤ z0
(4.7)

wherefz is the vertical reaction force from the sea bottom,z is the vertical position of the node,
z0 is the sea bottom, andK is a sea bottom stiffness.

This element formulation only holds for cables with uniformproperties, so each section of
different cable type (chain, synthetic rope etc.) is modeled as a separate body and connected by
ball joint constraint1 in HAWC2’s multi-body formulation.

Point masses are implemented with both linear and quadraticviscous damping terms to model
clump masses and drag buoys.

As an example of using the model, a mooring system consistingof an anchor, a chain section
and a fiber rope section will be modeled by one body with the chain properties and one body
with the fiber rope properties. The chain body will be connected by a ball joint constrain to the
anchor and the fibre rope body in its first and last node, respectively, and the fiber rope body
will be connected to the main structure by a ball joint constrain at its last node. The anchor is
assumed to be fixed in space.

4.2.3 The mooring system

The mooring system consists of three catenary lines with a concentrated mass on each of
the lines for additional stiffness. The mooring system is similar to the one used in the OC3
project[8]. The mooring system has two delta lines splitting each catenary line into two connec-
tion points on the float. In the quasi-static modeling framework, these delta lines are neglected
and the main line is extended and connected directly to the float2. In the dynamic modeling
frame work, the delta line configuration is straight forwardto include, and two model versions
are constructed; one where the main line is extended and connected to the tower resembling
the quasi-static model (M1) and one where the delta lines areincluded in the model resembling
the true mooring system (M2). The quasi-static mooring linecharacteristic from the MIMOSA

1A ball joint constraint fixes two nodes relative to each otherin translations but they a free in relative rotations.
2This simplified model is the modeling approach used in the OC3project among other studies of floating turbine.
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Figure 4.2. Results for the mooring system at very slow oscillations (Tp = 400s) compared to
quasi-static results from MIMOSA. The restoring force and displacement are normalized by the
rated aerodynamic thrust and rotor diameter of the particular turbine.

program has only been available for the simplified model, so the delta line configuration (M2)
cannot be compared directly to quasi-static results.

The line segment modeling the two delta lines in the M1 model is given the mass and drag
properties as the sum of mass and drag coefficients from the two delta lines in the M2 model.
The mooring line properties are taken from a mooring system of a test turbine, and is therefore
confidential.

4.2.4 Mooring Line Response

In this section, the dynamic mooring system model is validated against quasi-static results,
showing good results. Furthermore, the effect of includingthe dynamic model is shown and
discussed. All results in this section are based on measuring the horizontal mooring force for
prescribed harmonic oscillating motion of the mooring-turbine connection point.

Figure (4.2) shows force response to slow motion of the two dynamic mooring line models
compared to the quasi-static results from MIMOSA. The restoring force and displacement is
normalized by the rated aerodynamic thrust and rotor diameter of the particular turbine. All
models are seen to agree very well. Furthermore, it is seen that to balance the rated aerody-
namic thrust from the turbine the float will be pushed around 0.1 rotor diameters down wind.
Figure (4.3) shows the restoring force for a higher oscillation frequency. The drag forces in the
dynamic models (M1 and M2) are seen to open the loop and introduce some hysteresis in the
oscillations.

The yaw stiffness are different for the two model versions (M1 and M2) where the delta lines
of the M2 model increase the quasi-static yaw stiffness considerably (Figure (4.4)). Notice that
the curve for M2 at high angles are parallel to the M1 single line model because the delta lines
collapse into one line at these high angles.
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Figure 4.3. Results for the mooring system at Tp = 50s oscillations compared to quasi-static re-
sults from MIMOSA. The loops follows an anticlockwise direction. The mooring restoring force
is normalized by the rated aerodynamic thrust for the particular turbine and the displacement
by the rotor diameter.

Ws [m/s] 5 7 9 11 13
Ti [-] 0.2244 0.1860 0.1647 0.1511 0.1417
Hs [m] 1.94 2.26 2.65 3.11 3.61
Tp [s] 3.82 3.98 4.20 4.49 4.85

time [h] 22460 26068 25102 23340 18958

Ws [m/s] 15 17 19 21 23
Ti [-] 0.1348 0.1295 0.1254 0.1220 0.1192
Hs [m] 4.14 4.70 5.25 5.79 6.31
Tp [s] 5.26 5.73 6.24 6.77 7.30

time [h] 14123 9708 6182 3657 2014

Table 4.1. Wind speed, turbulence intensity, significant wave hight, wave period and the number
of hours at the wind speed in the life time for the load cases used in the hydro-aero-elastic
simulations.

4.2.5 Hydro-aero-elastic response

This section deals with the effect of the different mooring model complexity on the turbine
loads. The full mooring system is applied to a floating wind turbine in hydro-aero-elastic sim-
ulations at different operational conditions. Table 4.1 shows the load cases used in this work.
The wave fields are irregular and based on Jonswap spectrum with the significant wave height
and period given in table 4.1. The wind and wave directions are assumed to coincide. Each load
case is simulated six times with different realizations of wind and wave fields. Each simulation
is 1200 seconds of which the first 300 seconds is discarded to remove initial transients leaving
15 minuets for analysis. The same six wind and wave fields for each wind speed are used for
each model, such that results can be compared directly.

To analyze the extreme loads the maximum value for the five sensors (Flapwise and edgewise
blade root bending, and longitudinal and lateral tower bottom bending3 and yaw moments)

3Flapwise and edgewise blade motion is out of and in rotor planmotion, respectively. Tower longitudinal and lateral
motion is in the wind direction and perpendicular to the winddirection, respectively.
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Figure 4.4. Results for the full mooring system at Tp = 200 s yaw oscillating with 20 deg
amplitude compared to quasi-static results from MIMOSA.

are extracted from each simulation. All results from each wind speed are normalized with re-
spect to the corresponding results from the quasi-static model. The mean value for the different
wind and wave realizations, for each wind speed and each model, are computed alongside
the standard deviation between the different realizations. Figure 4.5 and 4.6 shows these rela-
tive extreme loads and standard deviations for blade root bending moments and tower bottom
bending moments, respectively. For the blade loads, longitudinal tower and yaw loads, the
variations between models are seen to be less than the variation between the different wind
and wave realizations with the same model, so the mooring model does not affect these loads.
The lateral tower bending loads decrease for the M2 model (dynamic mooring line with delta
lines), but the lateral bending moment is two to four times smaller than the longitudinal, so
the decrease in extreme lateral tower bending does not affect the over all tower load, since it
is the longitudinal load that is design given. The reason forthe decrease in the extreme lateral
tower loads for the M2 model, is that the delta lines increases the yaw stiffness, and therefore
the down wind component contributing to the lateral tower loads is less, resulting in reduced
lateral tower bending loads.

The effect of the mooring line modeling on the turbine fatigue loads is measured by computing
the equivalent load for the same sensors as used in the extreme load analysis above. The equiv-
alent load are computed for each time series and the mean and standard deviations for each load
cases and model are computed and normalized with respect to the quasi-static results. Figure
4.7 and 4.8 shows these relative equivalent loads and standard deviations for blade root bend-
ing moments and tower bottom bending moments, respectively. The blade fatigue loads are
not affected by the mooring line modeling. The longitudinaltower bottom equivalent bending
moment is seen to be reduced by around 10 % for the low wind speeds and the lateral tower
bottom equivalent bending moment is reduced by around 20 % for intermediate wind speeds.

To evaluate what these changes in equivalent loads account for in the turbines lifetime, the
lifetime equivalent loads are computed based on the number of operating hours given in Table
4.1. Table 4.2 shows the lifetime equivalent loads normalized by the value of the loads for the
quasi-static model. It is seen that the longitudinal and lateral tower load are reduced by around
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Figure 4.5. Blade extreme loads; top and bottom plots show extreme flapwise and edgewise
blade root bending moments, respectively. For each wind speed and each model six simulations
with different realization of wind and wave filed are conducted. All results are normalized by
the quasi-static results at the given wind speed. The figure shows the mean value of the six
different simulations with each model and the standard deviation between the simulations.

model blade tower
flap edge long. late. yaw

Q-S 1 1 1 1 1
M1 0.97 1.0 0.95 0.89 0.99
M2 0.97 1.0 0.94 0.83 0.99

Table 4.2. Lifetime equivalent load relative to the quasi-static results.

5 % and 10 %, respectively, while all other loads stays almostconstant.

4.3 Reduced model

The number of DOFs for an entire mooring system is large compared to the rest of the wind
turbine model. It is therefore desirable to reduce the number of DOFs and only retain a mini-
mum number of DOFs necessary to describe the dynamic response of the mooring system of
interest, i.e. in the frequency range of interest. Such a procedure has been developed and tested
and the procedure is described next.

In brief, the procedure uses the simulated response from simulations of the full mooring system
in HAWC2 to identify a reduced set of 1st order ODEs which can then be imported by other
software models, e.g. HAWCStab2, HAWC2 itself, or others. The steps in the procedure are as
follows:

• Simulate the response of the system to obtain a set of simultaneous inputs and outputs.
In the present example, the movement of the interface node isprescribed and the reaction
force in the same node is captured from the simulation.
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Figure 4.6. Tower extreme loads; from the top the plots show longitudinal, lateral and yaw
tower bottom extreme bending moments, respectively. For each wind speed and each model
six simulations with different realization of wind and wavefiled are conducted. All results are
normalized by the quasi-static results at the given wind speed. The figure shows the mean
value of the six different simulations with each model and the standard deviation between the
simulations.

• A linear state-space model is identified based on the simulated input/output by using an
identification routine in MATLAB (n4sidor pem)

• The identified state-space model (which is in discrete time format) is transformed into a
continuous time state-space model.

• A modal reduction of the full continuous time state-space model is made. Here the fre-
quency limit where the resulting model is valid is chosen.

• Finally, a state variable transformation is made which firstly introduces the output state
variables as direct state variables in the ODEs, and secondly makes the final ODEs work
conjugate to the input/output definition.

Through the rest of this section an example is shown which demonstrates each step in the pro-
cedure. The chosen example focuses on a realistic mooring system for a floating wind turbine,
and the aim is to derive a simplified dynamic model describingthe relation between force and
displacement of the interface point between mooring systemand floating foundation.

The first step of the procedure is to obtain a time series of interrelated force and displacement.
The full mooring system is modelled in HAWC2 and the interface point is forced to move
in such a way that the frequency spectrum of the displacementhave sufficient contents in the
frequency range of interest. In the present case the displacement signal is derived by filtering
random noise through a second order low pass filter. The resulting time series of interrelated
force and displacement at the interface is shown in Figure (4.9). Note that in this (qualitative)
example the force and displacement have been normalised by their maximum values.

The transfer function between displacement and force can deestimated directly from the time
series in Figure (4.9), see Figure (4.10) titled ”Raw data”.The upper plot in Figure (4.10) shows
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Figure 4.7. Blade fatigue loads; top and bottom plot show flapwise and edgewise blade root
equivalent bending moments, respectively. For each wind speed and each model six simulations
with different realization of wind and wave filed are conducted. All results are normalized by
the quasi-static results at the given wind speed. The figure shows the mean value of the six
different simulations with each model and the standard deviation between the simulations.

the amplitude of the transfer function and the lower plot shows the phase. The remaining graphs
other then the ”Raw data” graph are results from the individual steps in the reduction procedure
and they will be referenced below. The frequency scale has been normalised by the sampling
frequency that was used in the simulation, however, it is emphasized that the shown frequency
range covers the frequencies which we are normally interested in for load calculations.

It is seen from the shape of the transfer function that the mooring system behaves dynamically
in the frequency range coinciding with that of the wind turbine, and thus indicates that it is
important not to treat the mooring system as quasi-static inload simulations of floating wind
turbines. The transfer function corresponding to a quasi-static mooring system model would
appear in Figure (4.10) (top plot) as a horizontal line crossing the y-axis in the same location
as the dynamic transfer function, and the phase (bottom plot) would be zero at all frequencies.

The next step of the method is to identify a linear state-space system which is able to describe
the response. This is done by use of the MATLAB toolbox methodsn4sidor pem. The result of
this step is a system like the one in Eq. (4.8) with a certain system order. The transfer function
associated with the identified state-space system is shown as the second graph titled ”Discrete
model” in Figure (4.10). For the present example, the chosenmodel order was 60 which is quite
high compared to the order which MATLAB chose by default. This order was chosen based of
the correlation between the transfer function of the raw input relations and the identified model.

xn+1 = ADxn+BDun (4.8)

yn = CDxn

In the next step, the identified discrete state-space is transformed into a continuous state-space
model like the one in Eq. (4.9) by use of the built-in MATLAB method d2c. The transfer
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Figure 4.8. Tower fatigue loads; from the top the plots show longitudinal, lateral and yaw
tower bottom equivalent bending moments, respectively. For each wind speed and each model
six simulations with different realization of wind and wavefiled are conducted. All results are
normalized by the quasi-static results at the given wind speed. The figure shows the mean
value of the six different simulations with each model and the standard deviation between the
simulations.

function for the associated continuous state-space model is shown as the third graph titled
”Continuous model” in Figure (4.10). The correlation with the preceding transfer functions is
good for low frequency, but it starts to deviate with increasing frequency. This has to do with
the way the the force input is assumed to vary between time steps for thed2cmethod, and it
emphasizes the need for small time steps in the sampling of time series dependent on which
frequency range the reduced model has to be valid within. It seems that sampling frequency
(one divided by simulation time step) should be at least 10 times the upper frequency of interest
for the reduction model, meaning that if the reduction modelshould be valid up to say 5 Hz
then the sampling frequency should be at least 50 Hz (time step of 0.02s).4

ẋ = Ax +Bu (4.9)

y = Cx

The system order of the continuous time model is the same as the original discrete model, and
this order is reduced further in the next step by a modal reduction. The state vectorx is expanded
by a limited number of eigenvectors ofA - exactly those eigenvectors that have eigenvalues in
the frequency range of interest.5. The complex eigenmodes used in the expansion is chosen
(and ordered) by the permutation matrix,P. The ordering of the picked eigenmodes is such
that the resulting expansion matrix,Gs = GP is divided into two complex conjugates column
blocks. The state vectorx then becomes

x = GPq= Gsq =
[

γs γs
]
q (4.10)

4Alternatively, reduction of the discrete model by keeping only the eigenvectors corresponding to low frequency
can be done before the conversion into a continuous time model.

5If real eigenvalues exist the corresponding eigenvector can be included directly as extra columns inT in Eq. (4.12)
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where() means the complex conjugate of(). Sincex is a real vector andG is a complex matrix,
thenq is also complex. This is undesirable because the final reduced set of equations will then
also be complex. To avoid this, a transformation ofq into a new set of state variables,qs, is
made.

q =

[
I jI
I −jI

]
qs

(Is)≡ Isqs (4.11)

wherej =
√
−1 andI is the identity matrix. By inserting (4.11) into (4.10) the final transfor-

mation and reduction matrix,T, is found,

x =
[

γs γs
][ I jI

I −jI

]
qs =

[
γs+ γs j(γs− γs)

]
qs

(T)
≡ Tqs (4.12)

Note thatT is composed of the real and imaginary parts ofγs and is therefore a real matrix.
The pseudo inverse ofT becomeT−1 = Is

−1PTG−1, and by inserting (4.12) into (4.9) and
pre-multiplication byT−1 the reduced set of EOMs become

q̇s = T−1ATqs+T−1Bu
(As, Bs)≡ Asqs+Bsu (4.13)

y = CTqs
(Cs)≡ Csqs (4.14)

The reduced system matrixAs has the form

As =

[
Re(λs) −Im(λs)

Im(λs) Re(λs)

]
(4.15)

whereRe() andIm() means the real and the imaginary part of the argument, respectively, and
λs is the diagonal matrix containing the eigenvalues corresponding to the eigenvectorsγs.

Generally, any similarity transformation of the state variables are allowed - such transforma-
tions do not alter the system behavior related to the input/output and this property is exploited
in the final step. The final step in the procedure introduces the output state variables,y, as di-
rect state variables in the ODEs, and makes the final ODEs workconjugate to the input/output
definition by two successive state variable transformations. Both the input matrix,Bs, and the
output matrixCs enter into these transformations.

The first transformation is defined via the transformation matrix T1 (this is the transformation
which makes the final ODEs work conjugate to the input/outputdefinition)

T1 =

[
Bs | 0

I

]
=

[
B1

s 0
B2

s I

]
(4.16)

whereB1
s is the upper quadratic matrix ofBs andB2

s is the remaining lower part.

The second transformation is defined via the transformationmatrix T2 (this is the transforma-
tion which makesy the (upper) part of the final state variables)

T2 =

[
(CsBs)

−1 −(CsBs)
−1C2

s
0 I

]
(4.17)

and thus

T2
−1 =

[
(CsBs) C2

s
0 I

]
(4.18)

whereC2
s the right sub matrix ofCs =

[
C1

s C2
s
]

andC1
s is quadratic.

By substitution ofqs
(qf )≡ T1T2qf into (4.13) and (4.14) and post-multiplication byT1

−1, we
arrive at the final set of ODEs

T2q̇f = T1
−1AsT1T2qf +T1

−1Bsu (4.19)

y = CsT1T2qf (4.20)
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Doing the matrix multiplications which defines the new inputmatrix and the new output matrix

reveals the idea of the two transformation, namely that the input matrix,T1
−1Bs =

[
I
0

]
, and

similarly for the new output matrix,CsT1T2 =
[

I 0
]
. It is seen from the structure of this

new output matrix that the output state is now actually contained directly as the upper part of
the variables which means that we can discard all of Eq. (4.20). So, the final ODEs can be
written as

Df q̇f −Afqf =

{
u
0

}
(4.21)

where

Df = T2 (4.22)

Af = T1
−1AsT1T2 (4.23)

qf =

{
y
...

}
(4.24)

remembering the location ofy insideqf . The transfer function of the final model is shown in
Figure (4.10) titled ”Continuous, Reduced model”. The finalmodel has 26 DOFs which is a bit
more than expected considering how the transfer function looks. Still it is indeed an acceptable
size to include elsewhere (e.g. in HAWCStab2) considering the information about the dynamic
behaviour the model provides.

Finally, a time simulation of the model ODEs using the original force input in Figure (4.9)
was made. The transfer function between input/output was estimated by the built-in function
tfestimate, and the result is shown in Figure (4.10) titled ”Simulated,Reduced model”. The
correlation with the other results are good at low frequencies. For higher frequencies the peaks
in the spectrum are seen to shift towards lower frequency. This is due to the frequency shift
which is inherent in the Newmark time integration method. Since the Newmark time integration
scheme is also used inside HAWC2, it means that the same frequency shift is already present
in the time series on which all the results above are based. This fact once more emphasizes the
significance of choosing a sufficiently low time step in the simulations dependent on the upper
frequency of interest.

4.4 Conclusion

The development of floating wind turbines is a challenge for the conventional design tools. In
wind turbine load simulations mooring systems are normallymodeled as quasi-static nonlinear
springs with the same stiffness characteristic as the mooring system. In this work a dynamic
mooring line model is developed and implemented in a comprehensive state of the art aeroe-
lastic wind turbine simulation tool. The new simulation tool is used to analyze the effect of
different mooring line model complexities on wind turbine loads.

It is found that both extreme and fatigue loads on the blades are unaffected by the different
mooring line models. The lateral tower extreme load is reduced by the most comprehensive
mooring models (M2), but the extreme lateral tower load is not a design driving tower load.
The fatigue of both the lateral and longitudinal tower modesare reduced, and these reductions
can lead to tower cost reductions.

The results in this work indicate that the mooring system hasan effect on the tower loads, but
for the wind turbine loads it seems to be conservative to use the quasi-static modeling approach.

Finally, a general method which can be used to extract a reduced, linear model of the mooring
system or other systems was described. The method converts asimulated response of the full
mooring system into a set of first order ODEs which can be used to include the dynamics of the
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mooring system in other applications, e.g. for modal analysis. The result of using the method
shows the significance of using sufficiently small time stepsin the simulated input/output which
is used as basis for the method.
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5 Closed-loop aero-servo-elastic analysis

Author: Morten Hartvig Hansen

New possibilities of closed-loop aero-servo-elastic eigenvalue and frequency-domain analyses
of wind turbines based on the recent code HAWCStab2 are described in this section. Open-
loop aeroelastic eigenvalue analyses based on linear aeroelastic models of wind turbines have
led to new knowledge about the aeroelastic stability boundaries of wind turbines [1]. Additions
of linear models of actuators and controllers to the linear aeroelastic models enable the new
possibilities: closed-loop aero-servo-elastic stability analysis, controller tuning based on pole
placement and frequency response design, and derivation oflinear first-principle reduced order
models for model-based controllers. This section containsfirst an overall description of the
linear aero-servo-elastic model of HAWCStab2, and then examples of closed-loop aero-servo-
elastic analyses of a combined collective and cyclic pitch controller, showing some of the new
possibilities.

5.1 Linear aero-servo-elastic model

The structure of a three-bladed wind turbine is described inHAWCStab2 by articulated Timo-
shenko beam elements in a co-rotational finite element formulation [2]. The turbine is divided
into three main substructures: a ground fixed structure (tower and nacelle-tower connection),
an axis-symmetric structure rotating at a constant mean speed (drivetrain and main shaft),
and a three-bladed isotropic rotor structure (hub and rotorblades). The aerodynamic forces
are modeled by the Blade Element Momentum (BEM) method coupled with a modified four-
state Beddoes-Leishman model of 2D unsteady aerodynamics in each aerodynamic calculation
point along the blades. There is currently no model of dynamic inflow effects implemented in
HAWCStab2; the plan is to implement the dynamic inflow model of HAWC2.

The nonlinear equations of motion are derived from Lagrange’s equations with the generalized
forces due to the non-conservative aerodynamic forces derived from the principle of virtual
work [3]. Analytical linearization and transformation into multi-blade coordinates using the
Coleman transformation (see e.g. [1] or [4]) render the following linear time-invariant aeroe-
lastic equations of motion:

Mz̈s+(Cd +G+Ca) żs+(K +Ka)zs+A f za = Bqq+Bvsv (5.1a)

ża+Adza+Csżs+K szs = Bvav (5.1b)

wherezs andza contain the structural displacement states and aerodynamic states, respectively,
noting that the states on the rotor are given in multi-blade coordinates. The matrices of the
structural equation (5.1a) are the mass matrixM , the structural damping matrixCd given by a
spectral damping model [5], the gyroscopic matrixG, the aerodynamic damping matrixCa, the
elastic and centrifugal stiffness matrixK , the aerodynamic stiffness matrixKa, and a coupling
matrixA f containing the forces on the structure due to variations of the aerodynamic states. The
right hand side of the structural equation contains the input matrix Bq from variations in pitch
and generator bearing torquesq, and the input matrixBvs from variations in wind fieldv. The
matrices of the aerodynamic equation (5.1b) are the system matrixAd, the feedback matricesCs

andK s from the structural velocities and deflections, and a similar wind input matrixBva on the
right hand side. Using the Coleman transformation, the windfield vectorv consists of variations
of the mean wind and two linear wind shearsv= {vm vv vh}T , wherevv andvh are the variations
of linear vertical and horizontal shears, respectively. Similar, the variations of the pitch bearing
torques in the vectorq are described by a torqueqθcol describing simultaneous pitch actuation
on all three blades and by two cyclic torquesqθcos andqθsin describing 1P azimuthal actuation
of the blades. In HAWCStab2, the azimuth angle is zero for theblade pointing down, thus the
cosine and sine cyclic pitch actuation correspond to tilt and yaw excitation (for rigid blades as
discussed later), respectively.
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The linear aero-servo-elastic equations (5.1) can be set upfor any operational point given by the
mean wind speed, pitch angle, and rotor speed. The linearization is performed assuming small
vibrations about the steady state obtained by solving the nonlinear equations of equilibrium
between the internal elastic and centrifugal forces (including nonlinear geometric stiffness)
and the external aerodynamic forces. This steady nonlineardeflection state of the rotor blades
is stationary because the incoming wind is assumed to be uniform and perpendicular to the
rotor (neglecting e.g. wind shear, tower shadow, turbulence, and static and elastic rotor tilt),
and the gravity is neglected.

Closed-loop aero-servo-elastic equations

To close the loop, the aeroelastic equations of motion (5.1)are first rewritten into first order
state-space form as

ẋ = Ax +Bu+Bvv (5.2a)

y = Cx+Du+Dvv (5.2b)

where the state vector isx = {za zs żs}T , the input vector isu= q, and the system matrixA can
be derived as

A =




Ad K s Cs

0 0 I
−M−1A f −M−1(K +Ka) −M−1(C+G+Ca)


 (5.3)

and the input matricesB andBv can be derived as

B =




0
0

M−1Bq


 and Bv =




Bva

0
M−1Bvs


 (5.4)

Note that further inputs from the controller may be appendedto the input vectoru, whereby
the input matrixB is extended accordingly. The output vectory in Equation (5.2) depend on
the signals needed for the controller. These signals are defined by the output matrixC from the
system states, the feed-through matrixD from control inputs, and the feed-through matrixDv

from wind inputs. Examples of the setup of these matrices aregiven in the following section.

The controller equations can be written on first order form as

ẋc = Acxc+Bcy (5.5a)

u = Ccxc+Dcy (5.5b)

where the state vectorxc and the system matrixAc describe the controller system driven by
the output of the aeroelastic systemy through the controller input matrixBc. The output of
the controlleru (the controller input to the aeroelastic system) is defined by the output matrix
Cc from controller states and the feed-through matrixDc from the aeroelastic system output.
Examples of the setup of these matrices are also given for thepitch controllers considered in
the following section.

The closed-loop aero-servo-elastic equations are obtained by first inserting Equation (5.5b)
into Equation (5.2b) and solving for the outputy. The resulting outputy is then inserted into
Equation (5.5b) for the controller inputu, whereby these vectors are given by the aeroelastic
and controller state variables and the wind input. Insertion into the system Equations (5.2a) and
(5.5a) yields the closed-loop aero-servo-elastic equations:

ẋase= Aasexase+Bv,asev (5.6a)

yase= Casexase+Dv,asev (5.6b)

where the aero-servo-elastic state and output vectors arexase= {x xc}T andyase= {y u}T ,
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respectively. The aero-servo-elastic system and input matrices are

Aase=

[
A +BDc(I −DDc)

−1C BCc+BDc(I −DDc)
−1DCc

Bc(I −DDc)
−1C Ac+Bc(I −DDc)

−1DCc

]
(5.7a)

Bv,ase=

[
Bv+BDc(I −DDc)

−1Dv

Bc(I −DDc)
−1Dv

]
(5.7b)

and the output and feed-through matrices are

Case=

[
(I −DDc)

−1C (I −DDc)
−1DCc

Dc(I −DDc)
−1C Cc+Dc(I −DDc)

−1DCc

]
(5.8a)

Dv,ase=

[
(I −DDc)

−1Dv

Dc(I −DDc)
−1Dv

]
(5.8b)

Note that the isolation of the output vectory using Equations (5.2b) and (5.5b) involves the
inversion of the matrix subtractionI −DDc, which may cause the problem of an algebraic
loop, e.g. by a proportional feedback of an acceleration signal. Such problem can be solved by
inserting a filter on the acceleration signal before the feedback, whereby it is moved from the
feed-through matrixDc to the controller output matrixCc.

Pitch servo model

The pitch actuator can either be modelled by a physical modelof for example a hydraulic pitch
system yielding a torque to a free bearing at the blade root flange [6], or by a generic PID
controller giving such pitch bearing torque based on an error between the actual pitch angle of
the free bearing and the pitch demand angle.

A much simpler model is often used in load simulations with the multi-body code HAWC2,
where a constraint is set up to prescribe the angle of the bearing between hub and blade. This
prescribed angle is then set to be the second order low-pass filtered value of the pitch demand
angle for the particular blade:

Θ̈k+2ξθωθΘ̇k+ω2
θΘk = ω2

θΘk,ref (5.9)

where(̇ ) = d/dt denotes time-derivation, and the parametersωθ andξθ are the frequency and
damping ratio of the low-pass filter between the actual absolute pitch angleΘk and the absolute
demand/reference pitchΘk,ref for blade numberk.

To implement this second order pitch servo model in the HAWCStab2 model (5.1a) for the
multi-blade coordinates of the pitch bearing rotations (θcol, θcos, andθsin), the mean steady
state pitch angle of the operational point (Θ0) must be subtracted from the absolute value (θk =

Θk−Θ0) in Equation (5.9), and the resulting equations fork = 1,2,3 must then be Coleman
transformed yielding three governing equations for the pitch variations described in multi-blade
coordinates





θ̈col

θ̈cos

θ̈sin



+




2ξθ 0 0
0 2ξθ 2Ω
0 −2Ω 2ξθ







θ̇col

θ̇cos

θ̇sin





+




ω2
θ 0 0

0 ω2
θ −Ω2 2ξθΩ

0 −2ξθΩ ω2
θ −Ω2







θcol

θcos

θsin



=





θ0,ref

θcos,ref

θsin,ref



 (5.10)

Note that the filter frequencies of the cyclic components decrease as the rotor speedΩ increases,
which reflects the fact that a stationary input on a cyclic pitch demand will correspond to a 1P
harmonic input to the actuator on the blade. The implementation of Equation (5.10) in the
closed-loop equations (5.6) follows from their replacement of the three equations in (5.1a) that
govern the pitch bearing rotations of the blades, whereby the input vectoru contains pitch
reference/demand signals instead of torque values.
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5.2 Collective and cyclic pitch controllers

To show the new possibilities of closed-loop analysis, a combined collective and cyclic pitch
controller is tuned for above rated wind speed operation, and the aero-servo-elastic frequency
response of the NREL 5MW reference turbine (Ωr = 12.1 rpm = 0.2 Hz) is analysed using
HAWCStab2. First, the equations of the two Proportional-Integral (PI) pitch controllers are
written in the form described above. Then, the collective pitch controller is tuned using the
pole placement method suggested by Øye [7], and the placement of the speed regulator mode
is checked with full state eigenvalue analysis in HAWCStab2. Then, the cyclic pitch controller
is tuned using the open-loop frequency response functions (FRFs) from cyclic pitch inputs to
rotor moment outputs, and the Ziegler-Nichols method basedon full state eigenvalue analysis.
The calculation of closed-loop FRFs using HAWCStab2 show large reductions of the low fre-
quency rotor moment loads due to the cyclic pitch controller, which finally are confirmed by
HAWC2 time domain simulations showing 25 – 30 % reductions inequivalent fatigue loads of
the flapwise blade root blade moments. In all computations and simulations, the frequency of
the second order pitch servo model described above is set to 100 Hz to remove its effect, how-
ever, the model is needed to use pitch demand angles as input the aeroelastic system equations
instead of pitch torques.

Controller equations

Figure 5.1 shows a schematics of the two combined collectiveand cyclic PI pitch controllers
that are operative above rated wind speed, which are similarto the controllers suggested by
Larsen [8]. The right side of the schematics shows the collective pitch controller that regulates
the rotor speedΩ to maintain the rated speed ofΩr . The rotor speedΩ is measured at the
generator end of the drivetrain (there is no gearbox model included and the rotational inertia
on the HSS are related to the LSS by multiplication with the squared of the gear ratio). It’s fed
through a second order low-pass filter with frequencyωl p,Ω and damping ratioζl p,Ω, and the
rated speedΩr is subtracted from the filtered rotor speedΩ̄ before it enters the PI controller with
the gainskP andkI . The output of the PI controller is multiplied by a gain scheduling factorηK

to give the collective pitch demand angleθcol. The power is controlled by the generator torque
either as ideal constant power controlQg =−Pr/Ω, or constant torque controlQg =−Pr/Ωr .

The left side of Figure 5.1 shows the schematics of the cyclicpitch controller that give cyclic
pitch inputs based on the azimuthal rotor position and the flapwise blade root moments assumed
to be measurable by strain gauges, or similar sensors. The flapwise blade root momentsmx

1, mx
2,

andmx
3 are first inverse Coleman transformed using the azimuthal angle ψ1 of blade 1 (blades

are here numbered in the direction of the rotation, oppositethe tower passage order). The
resulting tilt and yaw rotor moments,mtilt andmyaw, are fed through two individual second
order filters both with the same frequencyωl p,c and damping ratioζl p,c. The filtered rotor
momentsm̄tilt andm̄yaw are fed to two individual PI controllers with the same gainskc

P and
kc

I . The controller outputs are the two cyclic pitch demand angles,θtilt andθyaw, that would be
required to cancel out the combination of rotor tilt and yaw moments if the blade were rigid.
However, the flapping motion of the blades due to their flapwise flexibility will change the
phase between the cyclic pitch angle variation and the resulting tilt and yaw rotor moments [9].
To correct for this phase lag, the two cyclic pitch demand angles,θtilt andθyaw, are azimuthally
rotated by alead angledenotedψ0 (see the later Figure 5.6) to give these signals the correct
lead that compensates the lag:

{
θcos

θsin

}
=

[
cosψ0 sinψ0

−sinψ0 cosψ0

]{
θtilt

θyaw

}
(5.11)

The two new cyclic pitch demand angles,θcos andθsin, correspond to the two cyclic multi-
blade components of the pitch demand angle for each bladek, which by using the Coleman
transformation can be computed as

θk = θcol+θcoscosψk+θsinsinψk (5.12)
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Figure 5.1. Schematics of the two combined collective and cyclic PI pitch controllers opera-
tive above rated. The gain-scheduling factorηK = 1/(1+θm/KK) reduces the collective pitch
feedback for increasing wind speed measured by a mean pitch angleθm.

whereψk is the azimuth angle to bladek. Note that here the subscript “ref” has been omitted
from these pitch demand angles.

From the above description of the aero-servo-elastic system, the output vector of the aeroelastic
system can be defined as

y = {ω mtilt myaw}T (5.13)

whereω = Ω−Ωr is the speed error, which corresponds to the velocity state variable of the
generator bearing degree of freedom in the HAWCStab2 model.The rotor momentsmtilt and
myaw (which have zero mean due to the assumption of uniform inflow and zero gravity) are
obtained from the inverse Coleman transformation of the three flapwise blade root moments.
However, due to the multi-blade description of the rotor deformation in the HAWCStab2 model,
these moments can be computed directly from the cosine and sine components of the cyclic
deformation of the first element at the blade root. Noting that the state vector is divided into
aerodynamic states, structural deflection states and velocity states (x = {za zs żs}T), the output
matrix can be written on the form

C =




0 0 0 . . . 0 1 0 . . . 0
0 0 . . . . . . 0 kflap 0 . . . . . . . . . . . . . . . 0 0
0 0 . . . . . . . . . . . . . . . . . . 0 kflap 0 . . . 0 0


 (5.14)

wherekflap is a 1×6 matrix that is extracted from the elastic stiffness matrixdescribing the
flapwise moment due to the deflection of the second blade node away from its steady state
deflection. Note that this matrix is the same for both the tiltand yaw moments; the difference
is the placement of the matrix in the output matrixC: to obtain the tilt moment it is multiplied
on the cosine component of the blade root element deflection,and the yaw moment is obtained
from the sine component, noting that the azimuth angle is measured from the blade down
position. The output vector (5.13) is given by the states, i.e., there are no feed-through terms
thusD = Dv = 0.

The combined collective and cyclic pitch controllers has the state vector

xc =
{

ω̄ ˙̄ω φ m̄tilt ˙̄mtilt Mtilt m̄yaw ˙̄myaw Myaw
}T

(5.15)

whereω̄ and ˙̄ω are the filtered rotor speed variation and its time derivative, andφ is the integral
of the filtered rotor speed variatioṅφ = ω̄. Similar, form̄tilt , ˙̄mtilt , andMtilt and form̄yaw, ˙̄myaw,
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andMyaw, which are the filtered rotor moment, its time derivative, and its time integral, respec-
tively, for each the tilt and yaw moments. The 9×9 controller system matrixAc can be setup
as

Ac =




Ac,Ω 0 0
0 Ac,cyc 0
0 0 Ac,cyc


 (5.16)

whereAc,Ω andAc,cyc are 3×3 system matrices for the three pairs of a second order filter and
an integrator which are given as

Ac,Ω =




0 1 0
−ω2

l p,Ω 2ζl p,Ω ωl p,Ω 0
1 0 0


 and Ac,cyc =




0 1 0
−ω2

l p,c 2ζl p,cωl p,c 0
1 0 0


 (5.17)

The 9×3 input matrixBc to the controller system states can be written as

BT
c =




0 ω2
l p,Ω 0 0 . . . . . . . . . . . . . . . . . . 0

0 . . . . . . 0 0 ω2
l p,c 0 0 . . . . . . 0

0 . . . . . . . . . . . . . . . . . . 0 0 ω2
l p,c 0


 (5.18)

The output vector from the controller (the input to the aeroelastic system) is

u = {qg θcol,ref θcos,ref θsin,ref}T (5.19)

whereqg is the generator torque variation about the steady state value Pr/Ωr , θcol,ref is the
collective pitch demand, andθcos,ref andθsin,ref are the two cyclic pitch demand angles from the
cyclic pitch controller. The pitch demand angles are obtained from the controller states by the
4×9 output matrix

Cc =




0 0 0 0 0 0 0 0 0
kP 0 kI 0 0 0 0 0 0
0 0 0 kc

Pcosψ0 0 kc
I cosψ0 kc

Psinψ0 0 kc
I sinψ0

0 0 0 −kc
Psinψ0 0 −kc

I sinψ0 kc
Pcosψ0 0 kc

I cosψ0


 (5.20)

that contains the gains of the PI controllers and the lead angle. The power controller is modeled
as either ideal constant power control withQg =−Pr/Ω, or constant torque control withQg =

−Pr/Ωr . Linearization about the steady state valueΩ = Ωr +ω yields qg =
∂Qg
∂Ω ω, whereby

the 4×3 feed-through matrix becomes

Dc =

[
∂Qg
∂Ω 0 0

0

]
, where

∂Qg

∂Ω
=

{
0 constanst torque
Pr
Ω2

r
constant power (5.21)

Note that ideal constant power control leads to negative damping through the termBDcC in the
upper left part of the closed-loop aero-servo-elastic system matrix (5.7a).

Tuning of collective pitch controller

The PI gains of the collective pitch controller are tuned using pole placement of the rigid body
drivetrain mode as suggested by Øye [7]. The frequency of this speed regulator mode must be
sufficiently below the tower frequency to avoid excitation of the longitudinal tower mode, and
sufficiently high to avoid large rotor speed excursions.

Assuming rigid turbine and neglecting the pitch actuator dynamics, leaving the drivetrain rota-
tion variation as the only free degree of freedom (φ), and assuming quasi-steady aerodynamics
(ża = 0), the closed-loop aero-servo-elastic system equations (5.6) can be written on second
order form as

(
Ir +n2

gIg
)

φ̈+
(

∂Qg
∂Ω − ∂Q

∂Ω − ∂Q
∂θ kP

)
φ̇− ∂Q

∂θ kI φ = 0 (5.22)

where Ir and Ig are the rotational inertia of the rotor and generator, respectively, ng is the
gear ratio,∂Q/∂Ω is the gradient of the aerodynamic rotor torqueQ with respect to rotor
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speed variation (aerodynamic damping of the drivetrain), and ∂Q/∂θ is the gradient of the
aerodynamic rotor torque with respect to the collective pitch angle (aerodynamic gain). Øye
has suggested that the PI gains are set to obtain particular natural frequencyωΩ and damping
ratio ζΩ of the speed regulator mode described by the differential eigenvalue problem (5.22),
whereby the PI gains can be derived as

kP =
2ζΩωΩ (Ir +ng

2Ig)− ∂Qg
∂Ω + ∂Q

∂Ω

− ∂Q
∂θ

and kI =
ω2

Ω
(
Ir +n2

gIg
)

− ∂Q
∂θ

(5.23)

Based on experiments with the old 2 MW turbine sited in Tjæreborg, Øye has suggested that
the natural frequency and damping ratio should be 0.1 Hz and 0.6 – 0.7, respectively. Note that
the aerodynamic damping∂Q/∂Ω and gain∂Q/∂θ must be evaluated for operation at the steady
state values of pitch angle and rotor speed for each wind speed. These aerodynamic gains will
therefore change with wind speed and it is beneficial to gain schedule of PI gains accordingly.

Figure 5.2 shows the aerodynamic gain∂Q/∂θ for the NREL turbine assuming constant in-
duced velocities (frozen wake) as function of steady state collective pitch angle. The gains are
computed using HAWCStab2 for different wind speeds (red circles), but they are plotted as
function of the pitch angle, because the mean pitch angle of the blades denotedθm will be used
as the gain scheduling parameter. A linear fit (green line) shows that the aerodynamic gain can
be approximated by the expression

∂Q
∂θ

=
∂Q
∂θ

∣∣∣∣
0

(
1+

θm

KK

)
(5.24)

where ∂Q
∂θ

∣∣∣
0
≈ −334 kNm/deg is the aerodynamic gain at zero pitch angleθm = 0, andKK ≈

5.5 deg is the pitch angle at which the gain is doubled.

Figure 5.3 shows the aerodynamic drivetrain damping∂Q/∂Ω assuming frozen wake, which
shows a clear quadratic dependency on the steady state pitchangle. The aerodynamic damping
increases as the blades pitch due to the resulting increasedflapwise blade motion in the drive-
train rotation mode. Note that close to zero pitch around therated wind speed, the aerodynamic
damping is small and Øye suggest that it’s completely neglected in the pole placement; the ef-
fect of this assumption is shown later. Insertion of (5.24) and ∂Q/∂Ω = 0 into Equation (5.23)
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yields the PI gains

kP = ηK
2ζΩωΩ (Ir +ng

2Ig)− ∂Qg
∂Ω

− ∂Q
∂θ

∣∣∣
0

and kI = ηK
ω2

Ω
(
Ir +n2

gIg
)

− ∂Q
∂θ

∣∣∣
0

(5.25)

whereηK = 1/(1+θm/KK) is the gain scheduling factor that depend on the mean pitch angle
of the three blades. For the NREL turbine, the total rotor anddrivetrain inertia isIr +ngIg ≈ 39·
108 kgm2 and the constant torque control has been selected∂Qg

∂Ω = 0. With these parameters and
the desired natural frequencyωΩ = 0.1 Hz and damping ratioζΩ = 0.7 of the speed regulator
mode, the PI gains are set to

kP = ηK ·2.2 rad/(rad/s) and kI = ηK ·0.91 rad/rad (5.26)

The natural frequencyωl p,Ω and damping ratioζl p,Ω of the low-pass filter on the rotor speed
are also part of the tuning. The purpose of the filter is to reduce the response of the free-
free drivetrain mode, otherwise the collective pitch controller will excite this mode due to the
counter phase between the rotor speed measured at the generator side of the drivetrain and the
aerodynamic actuation torque from the rotor. The free-freedrivetrain frequency of the NREL
turbine is approximately 1.7 Hz and the filter frequency is initial set to 0.7 Hz. The damping
ratio of the filter is set to 0.8.

To check if the PI gains (5.26) and the low-pass filter parameters give the desired closed-loop
behavior of the NREL turbine, the aero-servo-elastic eigenvalues and mode shapes have been
computed with HAWCStab2 for the above rated wind speeds. Figure 5.4 shows closed-loop
aero-servo-elastic frequencies of the first 13 turbine modes as function of wind speed (green
curves), where BW and FW in the mode names refers to backward and forward whirling.
The red curve is the frequency of the drivetrain speed regulator mode when the turbine is
made stiff, which corresponds to the tuning system in Equation (5.22), except that the second
order filter on the rotor speed variation and the unsteady aerodynamic model are active. Hence,
the red curve should theoretically be around the tuned frequency of the speed regulator mode

ωΩ

√
1− ζ2

Ω ≈ 0.07 Hz, however, it is seen to lie above this value with the lowest value being
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0.11 Hz around 16 m/s. This increase is mainly caused by a coupling of the speed regulator
mode to the the second order filter at 0.7 Hz. At lower and higher wind speeds, the speed
regulator frequency of the the stiff turbine is further increased because the actual aerodynamic
gains are larger than those values used in the gain scheduling (5.24), which can be seen in
Figure 5.2, where the actual gains (red points) are numerically larger than the gains of the
linear fit (green line) used in the gain scheduling for low andhigh pitch angles.

When the turbine is flexible the frequency of the speed regulator mode is seen to increase
further and almost linearly with the wind speed. This increase is mainly caused by the flexibility
of the blades that deflect as the aerodynamic loading changesdue to the blade pitching which
is part of the speed regulator mode shape. The rotor and drivetrain are no longer performing a
rigid body rotation with corresponding high inertia, hencethe frequency increases due to the
lower effective inertia involved in the mode. The linear increase with the wind speed is caused
by the pitching of the blades whereby more of the dominating flapwise blade motion couples
with the speed regulator mode.

The closed-loop frequencies of the remaining modes in Figure 5.4 are similar to the open-loop
aeroelastic frequencies, except that the frequency of the first free-free drivetrain torsion mode
decreases with wind speed instead of remaining almost constant. This wind speed dependency
can also be explained by the increased coupling with the flapwise blade motion due to the pitch
action in this mode. Note that there is a rigid drivetrain rotation mode with zero frequency
(and zero damping) expressing that aerodynamic forces and generator torque are independent
of azimuthal rotor position.

Figure 5.5 shows the corresponding closed-loop aero-servo-elastic damping ratios of the first
12 turbine modes (the drivetrain rotation mode with zero damping is not shown) as function of
wind speed (green curves). The red curve is the damping ratioof the drivetrain speed regulator
mode when the turbine is made stiff, which should correspondto the tuning value of 0.7. The
increasing damping with wind speed is mainly due to the increasing aerodynamic damping of
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loop closed. The red curve is the damping of the drivetrain speed regulator mode when the
turbine is made stiff.
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the drivetrain (cf. Figure 5.3) which is not included in the gain scheduling.

The closed-loop damping of the speed regulator mode is dramatically decreased by the flexi-
bility of the turbine. Similar to risk of controller inducedvibrations of the free-free drivetrain
torsion mode, the flexibility of the blades will cause a phasedifference between the rotor speed
measured at the generator and the aerodynamic rotor torque obtained by the pitch action, which
is not included in the tuning model. Furthermore, the longitudinal motion of the flexible tower
due to the pitch action will cause a phase difference betweenthe pitch action and the obtained
aerodynamic torque that is also not included in the tuning model. These effects of the tur-
bine flexibility are amplified by the second order rotor speedfilter; if the filter frequency is
decreased from 0.7 Hz to 0.5 Hz, the closed-loop damping of the speed regulator mode even
becomes negative at operation at 12 m/s (results not shown),where the aerodynamic damping
of the drivetrain is lowest (cf. Figure 5.3). For this wind speed, the closed-loop damping of
the first free-free drivetrain torsion mode. This controller induced instability, due to insufficient
filtering of the response of this mode, can be avoided by lowering the filter frequency; however,
noting that a too low frequency will cause negative closed-loop damping of the speed regula-
tor mode. The highest minimum damping of the two modes at 12 m/s is obtained by a filter
frequency of 0.55 Hz.

The closed-loop damping ratios of the remaining modes in Figure 5.5 are similar to the open-
loop aeroelastic damping ratios, except that the damping ofthe first longitudinal tower bending
mode is slightly higher due to the collective pitch controller.

Tuning of cyclic pitch controller

The lead angle, gains, and low-pass filter of the cyclic pitchcontroller are now tuned for op-
eration at 17 m/s. A gain scheduling similar to the scheduling of the collective pitch controller
gains will probably improve the cyclic pitch controller performance; however, it has not been
investigated in the current implementation. The tuning is performed by first selecting a lead
angle, and then determining the PI gains by the Ziegler-Nichols method for three different
frequencies of the low-pass filter.

The lead angle must compensate the azimuthal lag of the rotormoment obtained from a cyclic
pitch action, which is mainly caused by the flapwise motion ofthe blades that couples through
the angle of attack to the aerodynamic forces. Figure 5.6 illustrates a typical lag angle to the
azimuthal position of maximum combined tilt and yaw rotor moment due to a 1P cyclic cosine
pitch signal. It can be estimated from the open-loop frequency response functions (FRFs) from
cosine pitch demand signalθcos to rotor tilt and yaw momentsmtilt andmyaw. These FRFs are
plotted for the NREL turbine in the top of Figure 5.7. The bottom plot shows the lag angle
computed from the magnitudes of the moments as arctan(|myaw|/|mtilt |). A stationary input
(zero frequency) on the cosine pitch signal, correspondingto a 1P input, yields a lag angle of
approximately 30 deg, and it remains between 10–40 deg up to 2Hz. The main objectives of the
cyclic pitch controller are the reductions of the 1P components of the blade root moments, cor-
responding to the stationary components of the rotor moments, and the lead angle is therefore
set toψ0 = 30 deg.

The purpose of the identical low-pass filters on the tilt and yaw rotor moments is to limit the
pitch action to an appropriate frequency band. For pitch action beyond the frequency of the
first torsional blade mode, the blade torsion will be in counter phase with the pitch torque.
Although, the pitch actuator dynamics is expected to add some mechanical low-pass filtering
of the pitch demand signal, there is a theoretical risk of exciting the torsional whirling modes
[1] by the cyclic pitch controller without these low-pass filters. The main purpose of the cyclic
pitch controller is to reduce the 1P blade and shaft bending loads, however, there has been a
discussion of the use of cyclic pitch to reduce loads at higher harmonics than 1P by letting
the cyclic controller operate in a wider frequency band. To investigate the effect of the filter
frequency, the PI gains are now tuned by the Zielger-Nicholsmethod forωl p,c = 0.4 Hz (2P),
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ωl p,c = 0.8 Hz (4P), andωl p,c = 5.0 Hz (25P). The damping ratios of all filter are set toζl p,c =

0.9.

To determine the ultimate proportional gain, the integral gain is set to zero and then the aero-
servo-elastic eigenvalues of the NREL turbine with both thecollective and cyclic pitch loops
closed are computed for increasing proportional gains. Figure 5.8 shows these closed-loop
eigenvalues in a pole plot limited from -7 s−1 to 3 s−1 on the real (damping) axis and from
0 Hz to 5 Hz on the frequency axis.

The larger red circles present the open-cyclic-pitch-loopeigenvalues, where the tuned collective
pitch loop is closed but the PI gains of the cyclic pitch controller are zeroed. Eigenvalues related
to structural turbine modes have been identified and named inthe plot from animations. Note
that the named eigenvalues up to the second symmetric flap mode correspond to the modal
frequencies and damping ratios seen in Figures 5.4 and 5.5 atthe wind speed of 17 m/s. The
many unidentified eigenvalues on the real axis and the line at0.2 Hz (1P) are modes with
dominating aerodynamic components not related to a structural mode.

As the proportional gain is increased with steps of 0.2 deg/MNm, the eigenvalues of modes
that involve asymmetric rotor motion are affected and move either left (higher damping) or
right (less damping), only small changes in the frequenciesof these modes are observed. The
ultimate gainku is the proportional gain when the lowest damped mode crossesinto the right
half plane and becomes negatively damped. Figure 5.9 shows azoom on the closed-loop aero-
servo-elastic eigenvalues in Figure 5.8, where it is seen that the second backward whirling edge-
wise mode is first to become negatively damped at a proportional gain ofkc

P = 1.4 deg/MNm.
The next crossings occur the first and second forward whirling flapwise modes at around
kc

P = 2.0 deg/MNm. A crossing of these two flapwise whirling modes will be significantly
more dominating in the turbine response than a crossing of second backward whirling mode
due to their direct coupling between the flapwise vibrationsto the rotor moments, which can
be seen in Figure 5.10 showing the FRF of the rotor moments forkc

P = 2.0 deg/MNm (and
kc

I = 0.0) due to a harmonic variation in vertical wind shear, where zero frequency corresponds
to a stationary shear. The ultimate gain is therefore set toku = 1.9 deg/MNm and the ultimate
periodTu = 1/1.3≈ 0.77 s is obtained from the frequency of the second forward whirling flap
mode as it crosses into the right half-plane. Using the Ziegler-Nichols method, the PI gains of
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Figure 5.8. Pole plot of closed-loop aero-servo-elastic eigenvalues for the NREL turbine at 17
m/s with zero integral and different proportional cyclic feedback gains and with 25P (5 Hz)
low-pass filtering on rotor moments. The pole plot is limitedfrom -7 s−1 to 3 s−1 on the real
(damping) axis and from 0 Hz to 5 Hz on the frequency axis.
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Figure 5.9. Zoom on the closed-loop aero-servo-elastic eigenvalues in Figure 5.8 ranging from
-1 s−1 to 1 s−1 on the real (damping) axis and from 0 Hz to 5 Hz on the frequencyaxis.
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Figure 5.10. Frequency response function of the rotor tilt moment due to harmonic variation
in vertical wind shear for the NREL turbine at 17 m/s with the cyclic pitch controller gains
kc

P = 2.0 deg/MNm and kcI = 0.0.

the cyclic controller with low-pass filters at 25P are therefore set to

kc
P = 0.4ku = 0.76 deg/MNm and kc

I =
1.2kc

P

Tu
≈ 1.2 deg/s/MNm (5.27)

The PI gains are tuned similarly when the filter frequency is 2P and 4P, except that the critical
modes determining the ultimate gains and ultimate periods are different.

Figures 5.11 and 5.12 show the closed-loop eigenvalues for the 4P low-pass filtering of the
rotor moments, where the first backward whirling edgewise mode is the first to become negative
damped at the proportional gain of 1.2 deg/MNm, which is usedas the ultimate gain. The modal
frequency is approximately 0.88 Hz giving an ultimate period of 1.1 s, whereby the PI gains of
the cyclic controller with 4P filters are set to

kc
P = 0.4ku = 0.48 deg/MNm and kc

I =
1.2kc

P

Tu
≈ 0.51 deg/s/MNm (5.28)

Note in Figure 5.12 that the eigenvalues related to the filters, denoted “filter poles”, cross into
the right half plane at slightly higher proportional gains.This controller induced instability is
caused by the shift in the phase between measured rotor moments and the feedback to the cyclic
pitch action due to the filters.

Figures 5.13 and 5.14 show the closed-loop eigenvalues for the 2P low-pass filtering of the rotor
moments, where the eigenvalues related to the filters are thefirst to cross into right half plane
at the proportional gain of 2.6 deg/MNm, which is used as the ultimate gain. The frequency
is approximately 0.6 Hz giving an ultimate period of 1.7 s, whereby the PI gains of the cyclic
controller with 2P filters are set to

kc
P = 0.4ku = 1.04 deg/MNm and kc

I =
1.2kc

P

Tu
≈ 0.75 deg/s/MNm (5.29)

Comparing the gains for the three different filter frequencies, it is seen that the gains do not
increase with the decreasing filter frequency, as one may have excepted due to feedback reduc-
tion effect of a lower filter frequency. The gains for the 4P filter (5.28) are lower than the gains
for the 2P filter (5.29), which can be explained by the proximity of the 4P (0.8 Hz) and the
0.88 Hz frequency of the first backward whirling mode that is the critical mode determining
the ultimate gain for this filter.

The effects of the cyclic pitch controllers with different filter frequencies on the rotor moments
are illustrated in Figure 5.15, showing Bode plots of the open- and closed-loop FRFs of the
rotor tilt moment due to a harmonic variation in vertical linear wind shear computed with
HAWCStab2, where a stationary wind shear corresponds to zero frequency. A similar plot can
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Figure 5.11. Pole plot of closed-loop aero-servo-elastic eigenvalues for the NREL turbine at
17 m/s with zero integral and different proportional cyclicfeedback gains and with 4P (0.8 Hz)
low-pass filtering on rotor moments. The pole plot is limitedfrom -7 s−1 to 3 s−1 on the real
(damping) axis and from 0 Hz to 5 Hz on the frequency axis.
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Figure 5.12. Zoom on the closed-loop aero-servo-elastic eigenvalues in Figure 5.11 ranging
from -0.3 s−1 to 0.3 s−1 on the real (damping) axis and from 0 Hz to 2 Hz on the frequency
axis.
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Figure 5.13. Pole plot of closed-loop aero-servo-elastic eigenvalues for the NREL turbine at
17 m/s with zero integral and different proportional cyclicfeedback gains and with 2P (0.4 Hz)
low-pass filtering on rotor moments. The pole plot is limitedfrom -7 s−1 to 3 s−1 on the real
(damping) axis and from 0 Hz to 5 Hz on the frequency axis.
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Figure 5.14. Zoom on the closed-loop aero-servo-elastic eigenvalues in Figure 5.13 ranging
from -0.3 s−1 to 0.3 s−1 on the real (damping) axis and from 0 Hz to 2 Hz on the frequency
axis.
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Figure 5.15. Frequency response functions of the rotor tiltmoment due to harmonic variation
in vertical wind shear for the NREL turbine at 17 m/s in open- and closed-cyclic-pitch-loop
using three different filter frequencies.

be made for the rotor yaw moment due to a vertical linear wind shear. Note that the tilt and yaw
rotor moments exhibit symmetric properties by being interchanged for harmonic variations in
horizontal linear wind shear.

The low frequency response is significantly reduced by the cyclic pitch controller. The steady
state tilt rotor moment become zero for all filters in the limit of zero frequency, corresponding
to zero 1P flapwise blade loads due to a stationary linear vertical wind shear. Turbulence can be
Fourier transformed spatially in the azimuthal direction (due to periodicity). The first harmonics
are the vertical and horizontal linear shears, which will capture the largest structures of the
turbulence with the highest energy and they will vary slowlyin time [10]. From Figure 5.15, it
is predicted that the closed-loop flapwise blade root momentdue to these components will be
lowest for the controller with the 25P filter, second lowest with the 2P filter, and highest with
the 4P filter.

The closed-loop response of the controller with the 2P filtershows a significant but damped
response peak at 2P (0.4 Hz). It is caused by the phase shift ofthe measured rotor moments by
the filter, whereby the cyclic controller is increasing the response at around the filter frequency.
A similar but more damped peak is seen for the 4P filter slightly below 4P (0.8 Hz). This
small shift in resonance frequency of the filter is probably caused by its coupling with the first
backward whirling edgewise mode with a sharp resonance peakat approximately 0.88 Hz.

Simulations in HAWC2

To check the tuning of the controller and evaluate the efficiency of the cyclic pitch controller,
the response of the NREL turbine has been simulated with HAWC2 at 17 m/s in Class B normal
turbulence and wind shear exponent of 0.2 without and with the cyclic pitch controller using
different filter frequencies. The collective pitch controller is active in all simulations using
constant torque control and the same turbulence box. Simulations are run for 700 s and the first
100 s are discarded as transients.

Figure 5.16 shows the wind speed at hub height, rotor speed atthe generator, pitch angle and
flapwise blade root moment of blade 1, and moment at the yaw bearing from the HAWC2 sim-
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Figure 5.16. Time series from simulations of the NREL turbine at 17 m/s in Class B normal
turbulence and wind shear exponent of 0.2 without cyclic pitch and with cyclic pitch using
different filter frequencies.

ulations. There are significantly larger pitch actions and indications of lower flapwise moments
when the cyclic pitch loop is closed. These observations aremore clear in Figure 5.17 showing
a 20 s section of the same time series from 370 s and onwards. Nearly periodic closed-loop
pitch variations with a period of 5 s corresponding to 1P (0.2Hz) are seen in the first part of
this 20 s section, where also the closed-loop responses of the flapwise blade moment are re-
duced. The wind speed at hub height drops significantly towards the end of this 20 s section of
the simulation, which indicates a larger turbulence structure that dominates the deterministic
wind shear and thereby reduces the effectiveness of the cyclic controller. The variations yaw
moment seem to be higher for the closed-loop responses. Notethat the pitch actions have a
larger frequency content for the cyclic controller with the25P filter, as expected.

Figure 5.18 shows the Power Spectral Densities (PSDs) of theflapwise blade root moment
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Figure 5.17. Zoom of the time series in Figure 5.16.

and pitch angle of blade 1, and the tower yaw moment. Here, the1P blade load variations due
to wind shear are reduced by a factor of 20 – 100 depending on the filter frequency used in
the cyclic pitch controller. The 2P peak is slightly increased for the two controllers with low
frequency filters. The pitch action is mainly on 1P but the level of pitch variations is consistently
higher when the cyclic pitch controller loop is closed, especially with the 25P filter. Below 1P,
the yaw moment is reduced similar to the flapwise moment but itis increased at 3P for the low
filter frequencies and at 6P for the high filter frequency. Note that there is a response at 2P for
the filter with this frequency.

Table 5.1 shows the 1 Hz equivalent fatigue loads of the flapwise blade root moment (material
exponent of 10), yaw moment at tower top/nacelle connection(material exponent of 4), and the
mean pitch actuation power computed from the HAWC2 simulations shown in Figure 5.16. The
mean pitch actuation power is approximated by integration of the blade root torsional moment

52 Risø–R–1803(EN)



  0.01

   0.1

     1

    10

   100

1000

 0  1  2  3  4  5  6  7  8  9  10  11  12

T
w

r 
ya

w
 m

om
. [

M
N

m
2 s2 ]

Frequency [P]

0.0001

 0.001

  0.01

   0.1

     1

    10

   100

1000

P
itc

h 
[d

eg
2 s2 ]

  0.01

   0.1

     1

    10

   100

1000

F
la

p 
m

om
. [

M
N

m
2 s2 ] No cyclic 

2P filter 
4P filter 

25P filter

Figure 5.18. Power Spectral Densities (PSDs) of flapwise blade root moment, tower top yaw
moment, and pitch angle on blade 1 based on the time series in Figure 5.16.

Sensor No cyclic 2P filter 4P filter 25P filter
Fatigue flap moment [MNm/index] 10.3/100 7.65/75 7.77/75 7.07/69
Fatigue tower yaw moment [MNm/index] 6.64/100 7.42/112 7.49/113 8.01/121
Mean pitch act. power [kW/index] 0.17/100 1.02/591 1.03/597 2.02/1174

Table 5.1. Comparison of 1 Hz equivalent fatigue loads for the flapwise blade root (exponent
of 10) and tower top yaw (exponent of 4) moments, and mean pitch actuator power computed
from the 10 min simulations shown in Figure 5.16.

times the pitch velocity divided by 600 s. It is only intendedfor comparison, because there is
no model of bearing friction included in the simulations, which may significantly increase the
actual required actuation power.

The indices for the closed-loop responses show that the flapwise fatigue loads are reduced by
25 % with the low filter frequencies and by 31 % for the high filter frequency. The expenses
of these load reductions are significant increases in yaw moment at the tower top/nacelle con-
nection of about 12 % for the low filter frequencies and 21 % forthe high filter frequency. The
pitch actuator power (and pitch travel which is not shown) are significantly increased; six times
higher mean actuator power for the low filter frequencies, and even twelve times higher for the
high filter frequency.

5.3 Conclusion

New possibilities of closed-loop aero-servo-elastic eigenvalue and frequency-domain analyses
of wind turbines based on the recent code HAWCStab2 have beendescribed. Linear models of
actuators and controllers have been added to the linear aeroelastic models, which has enabled
closed-loop aero-servo-elastic eigenvalue and frequency-domain analysis useful for controller
tuning and for aero-servo-elastic stability analysis. These capabilities have been illustrated by
tuning and analyzing the closed-loop response of the NREL 5 MW turbine with two combined
collective and cyclic pitch controllers for above rated wind speed operation. The collective pitch
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controller is tuned by pole placement of a low order model, and the aero-servo-elastic full state
eigenvalue analysis showed that the turbine flexibility hasa large impact on the closed-loop
response. The cyclic pitch controller is tuned by first computing the lead angle from the open-
loop frequency response, and then tuning the cyclic feedback gains from blade root moments
using the Ziegler-Nichols method based on aero-servo-elastic full state eigenvalue analysis.
Time simulations with HAWC2 shows that the tuned controllers are able to reduce the fatigue
flapwise blade root moments by up to 25 %, however, at the expense of six times higher pitch
actuation and up to 21 % higher fatigue yaw moment at the towertop. HAWCStab2 is currently
being extended to facilitate the derivation of linear first-principle reduced order models for
model-based controllers, which for instance will enable optimal control that lowers the flapwise
blade moment without increasing the yaw moment on the tower.
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6 Lateral tower vibrations on offshore turbines

Author: Bjarne S. Kallesøe, Niels Troldborg, Niels N. Sørensen, andAnders Yde

6.1 Introduction

This chapter deals with different aspects of lateral tower vibration. Offshore turbines can ex-
perience situations where the wave direction is orthogonalto the wind direction and thereby
adding energy to the lateral tower mode. The first tower resonance frequency is often included
in the wave frequency band with the implication that the waveloading can lead to resonance
excitation of the very low aerodynamically damped lateral tower mode, resulting in a high
fatigue contribution on the tower and foundation.

This chapter looks into three aspects of this problem: First, an analysis of the aerodynamic
damping contribution to the first lateral tower mode; then, astudy of using active generator
control to reduce the lateral tower fatigue; and finally, a study of the feasibility of using a
passive yaw slip to limit excessive lateral tower vibrations.

6.2 Aerodynamic Damping of Lateral Rotor Oscillations

Aeroelastic stability and simulations tools based on the Blade Element Momentum (BEM)
method shows very low aerodynamic damping for the first lateral tower mode. BEM is derived
on basis of a balance of momentum and kinetic energy in a streamtube enclosing the rotor. Lat-
eral rotor motion affects the BEM model through changes in angle of attack, changes in relative
wind speeds and, if present, yaw correction models. It has been questioned if BEM yields the
correct aerodynamic forces for these lateral motions of therotor. In this work, the aerodynamic
work on lateral harmonic rotor motion is computed by both BEMand from computational
fluid dynamics (CFD) using respectively a fully resolved rotor geometry and an actuator line
(AL) representation of the turbine. The computations from BEM, AL and the fully resolved
rotor CFD shows a reasonable agreement. The aerodynamic work is converted into equivalent
damping for the first lateral tower mode, and the difference in damping contributions from the
different models were found to be negligible. Finally, the pure lateral rotor motion is compared
to the true first lateral tower mode motions, and the aerodynamic damping of this tower mode
is described.

6.2.1 Fully resolved rotor CFD computations

The in-house flow solver EllipSys3D is used for the three resolved CFD computations presented
in this work. The code is developed in co-operation between the Department of Mechanical
Engineering at the Technical University of Denmark and the Wind Energy Division at Risø-
DTU, see [1, 2] and [3].

The EllipSys code is second order accurate in time, using a second order backward differencing
time discretization and sub-iteration within each time step. In the present computations, the
diffusive terms are discretized with a second order centraldifferencing scheme. The convective
fluxes are computed using the third order accurate QUICK scheme of Leonard [4].

In the present work the turbulence in the boundary layer is modeled by the k-ω Shear Stress
Transport (SST) eddy viscosity model [5] in its standard RANS form.

To account for the rotation and translation of the rotor, a deforming mesh (DM) formulation is
used in a fixed frame of reference. In the present study the whole mesh is moved as a solid body
to enforce the rotor rotation and axial translation, even though the DM option is implemented
in a generalized way allowing arbitrary deformation of the computational mesh. To assure that
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no artificial mass sources are generated by the mesh deformation, the mesh velocities needed
for the convective terms are computed enforcing the space conservation law, as described by
[6]. The following inflow parameters are used for the fully resolved CFD: The inflow velocity
is specified according to the free wind conditions 6, 12, and 22 m/s, a density of 1.225 kg/m3

and the viscosity was 1.78×10−5 kg/m/s. A standard low turbulent laminar inflow is obtained
by using a specific dissipation rateω = 1×106 s−1 and a turbulent kinetic energyk = 1.0×
10−2 m2/s.

For grid generation, the full three bladed rotor is modeled to allow the cross stream movement
of the rotor, emulating the tower vibrations. The mesh uses an O-O-topology, where the in-
dividual blades are meshed with 256 cells around the blade chord, 128 cells in the spanwise
direction and a 64×64 block at the blade tip. In the normal direction, 128 cells are used. The
height of the cells at the wall is∼ 5× 10−6 m to resolve the boundary layers and keepy+

around 1. The outer boundary of the domain is located∼ 1100 meters from the rotor center or
approximately 10 rotor diameters away. The grid generationis performed with the 3D enhanced
hyperbolic grid generation program HypGrid3D which is a 3D version of the 2D hyperbolic
grid generator described in [7]. The total number of cells used is 14 million.

Inlet conditions corresponding to the described cases are specified at the upstream part of the
outer boundary, while outlet conditions corresponding to afully developed flow are used at
the downstream part of the outer domain boundary. No-slip conditions are applied at the rotor
surface. The edgewise vibration computations are performed as transient simulations, using a
time step of 1.267×10−3 s along with six sub-iterations within each time step.

6.2.2 Actuator line computations

The actuator line (AL) model, developed by Sørensen and Shen[8], combines three-dimensional
Navier-Stokes simulations of the flow field with a technique in which body forces are dis-
tributed radially along lines representing the blades of the wind turbine using a suitable smear-
ing function. The body forces acting on the blades are determined using a blade element ap-
proach combined with tabulated two-dimensional airfoil data. The main advantage of repre-
senting the blades by airfoil data is that the geometry of theblades does not need to be meshed
and that it is not required to resolve the boundary layer around the blades, which result in a
considerable reduction in computer resource requirements.

Figure 6.1. Detail of the mesh for the resolved rotor computations, showing the rotor geometry
and a slice through the rotor plane.
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In the present AL simulations, the flow field is computed usingEllipSys3D, as for the full rotor
CFD. The convective terms are discretized using a hybrid scheme combining the third order
accurate QUICK (10%) scheme and the fourth order CDS scheme (90%). All AL computations
are furthermore conducted as Large Eddy Simulations (LES) employing the mixed sub-grid
scale (SGS) model [9]. The mixed SGS viscosity model dependson a filter function and some
empirically determined constants, which are chosen in accordance with previous work [10].

The time step in the AL simulations is∆t = 3.5×10−3R/U0 whereR is the radius of the turbine
andU0 the free-stream velocity. The Reynolds number based on rotor radius isRe= 10−5.

The AL computations are conducted in a cubic computational domain with side lengthLx =

Ly = Lz = 24R and the turbine is placed with its point of rotation in the domain center. A high
concentration of grid points is distributed equidistantlyin a cubic region around the turbine.
The side length of the equidistant region is 2.6Rand the resolution here corresponds to 30 grid
points per rotor radius, which in [10] was shown to fulfill thebasic demands for a well resolved
LES. The total number of grid points in the grid used for the ALsimulation is 2.1×106.

The boundary conditions are as follows: The velocity is specified according to the free stream
velocity at the inlet, unsteady convective conditions at the outlet, symmetry conditions at the
bottom and top boundaries and periodic conditions on the sides.

6.2.3 BEM computations

The in-house aeroelastic code HAWC2 [15–17] is used to conduct the BEM aerodynamic com-
putations. The aerodynamic part of the HAWC2 code is based onthe BEM method, but ex-
tended from the classical approach to handle dynamic inflow,dynamic stall, skew inflow, shear
effects on the induction and effects from large deflections.One example is the effect of large
flapwise blade deflections causing a change in the effective rotor diameter and that the blade
forces are no longer perpendicular to the rotor plane. This reduces the thrust on the rotor and
thereby changing the induced velocities and vice versa. Dynamic stall is modeled by a modi-
fied Beddoes-Leishmann model that includes the effects of shed vorticity from the trailing edge
(Theodorsen Theory), as well as the effects of stall separation lag caused by an unsteady trail-
ing edge separation point. The time scale of the dynamic inflow model is so slow that it is not
active during the tower oscillations; however, the dynamicstall model will affect the results.

To mimic the rigid CFD model, all structural members in the model are made very stiff by
increasing the Young’s and shear modulus. The tower bottom is placed on a bearing, such that
the turbine can be moved side-to-side like an inverted pendulum whereby the rotor center will
perform an almost pure lateral motion.

6.2.4 Computational setup

The turbine used as an example in this study is the NREL 5 MW reference turbine [14]. The
rotor is undergoing prescribed sinusoidal oscillations inthe cross flow direction according to:

r(t) = Asin

(
2π
T

t

)
,

whereA= 1 m is the amplitude andT = 3.3333 s is the period of the cross stream vibrations.
Thus the hub of the rotor is oscillating at a frequency of 0.3 Hz, corresponding to the first tower
mode frequency of this particular turbine.

The inflow velocities in the simulations are set to respectively, 6 m/s, 12 m/s and 22 m/s. The
three cases is chosen to cover: below rated power at a low rotational speed, around rated power
with a high loading, and above rated power with pitched blades.
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6.2.5 CFD, AL and BEM results

Figure 6.2 shows the lateral aerodynamic forces as functionof lateral hub position during the
harmonic oscillations. Table 6.1 shows the lateral aerodynamic work per oscillation cycle. A
negative aerodynamic work indicates that the flow extracts energy from the oscillations, i.e.,
adding damping to the mode of motion.

For the 6 m/s case (cf. Figure 6.2a), there are significant differences between the results from
full rotor CFD, AL, and BEM. The slope of the principal axis ofthe loop predicted by BEM
points in another direction than in the CFD results. These qualitative differences in the loops
can be explained by the added mass of the rotor. The added masseffect is inherent in the CFD
formulation while it is neglected in the BEM formulation. The added mass is estimated by
assuming that the added mass of the blade is the same as for a circle with the same diameter as
the projected height of the airfoil in the direction of motion

madd =
∫ R

0
ρ

a(r)2

4
πcos(ψ)dr (6.1)

whereR is the rotor radius,ρ is the air density,ψ is the azimuth angle of the particular blade
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Figure 6.2. Lateral aerodynamic forces for lateral harmonic oscillations of the rotor at 0.3 Hz
and 1 m amplitude. All loops runs in a counter clockwise direction. a) 6 m/s, b) 12 m/s and c)
22 m/s.

Table 6.1. Aerodynamic work per cycle.

HAWC2 HAWC2 + added mass CFD AL
6 m/s -0.4 kJ -0.5 kJ -1.7 kJ -1.6 kJ
12 m/s -3.9 kJ -3.9 kJ -7.3 kJ -5.5 kJ
22 m/s -42.1 kJ -42.2 kJ -39.0 kJ -45.3 kJ
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anda(r) is the width of the airfoil projected onto the lateral direction of motion. Summing up
for all three blades yields the total added mass to the rotor

Madd =
3

∑
i=1

madd

(
ψ =

i −1
3

2π
)
= 2madd (6.2)

Figure 6.2a shows that including this added mass in the post-processing of the HAWC2 results
explains the qualitative difference between BEM and CFD. Regarding the slope of the loops,
the AL results lie in between the BEM and the BEM including added mass. The size of the
loops also vary quit a lot, but it should be noticed that the forces are very small, such that it is
only small differences in absolute numbers.

Table 6.1 shows the lateral work done in one oscillation. Thedifference in work between the
BEM and CFD is also seen to be relatively large, as expected bythe difference in the shape
of the loops. It will later be shown that even though as the differences are relatively large,
the effect on damping is negligible for all practical applications. It should be noted that the
added mass effects do not affect the aerodynamic work (Table6.1) and neither the damping.
The extra forces from the added mass are very small and can only be seen because the level of
the lateral aerodynamic forces is very low in the 6 m/s case. The added mass isnot important
for the aeroelastic results, it is merely included here to explain the small qualitative difference
between CFD and BEM in the 6 m/s case.

For the 12 m/s case (cf. Figure 6.2b), there is a much better agreement between all the results.
The effect of added mass is much less pronounced because the absolute force level is higher.
The CFD results still show a larger aerodynamic work than theBEM and AL results, but the
differences are much smaller than for the 6 m/s case. For the 22 m/s case (cf. Figure 6.2c), all
results are seen to agree very well. Also the aerodynamic work is very similar (Table 6.1).

To compare the aerodynamic work to the damping contributiona first order dynamic system is
considered

mẍ+ cẋ+ kx= 0 (6.3)

wherem is the modal mass of the first tower mode andk is the modal stiffness. The termcẋ is
then the damping force. The work carried out by the damping force term for one oscillation is
given by

W =

∫ x+xT

x
cẋdx (6.4)

wherexT is the trajectory of one oscillation. Assuming harmonic oscillations x = Asin(ωt)
Equation (6.4) becomes

W =

∫ t+2π/ω

t
cA2ω2cos2(ωt)dt = cA2ωπ (6.5)

The damping ratio is given byβ = c√
km

= c
4π f m, where f = ω

2π = 1
2π

√
k
m is the natural fre-

quency of the first tower mode. Using this definition of the damping ratio, the relation between
aerodynamic work and damping can be established as

β =
W

8A2 f 2mπ3 (6.6)

Hence, the aerodynamic work is related to the damping ratio by a constant(8A f2mπ3)−1 de-
termined by the modal frequencyf and modal massm, and the oscillation amplitudeA.

To measure the damping, the 5 MW turbine is modeled in HAWC2 with the lateral tower
direction as the only flexible component. The tower is excited by an external force at the tower
top with the first lateral tower frequency until the tower tophas an amplitude of 1 m. The
damping is then estimated by measuring the decay of the towertop oscillations. Figure 6.3
shows the lateral tower top deflection for the 22 m/s simulation.
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Figure 6.3. Lateral tower top deflection for the 22 m/s simulation. The excitation of the tower
top starts at 10 seconds and stops at 41 seconds, where the amplitude has reached 1 m.

To compare the aerodynamic work and aerodynamic damping, all aerodynamic work has to be
taken into account, and the internal work done by the generator has to be subtracted

Wtot =
∫ t+2π/ω

t
f ·vdt +

∫ t+2π/ω

t
T ·Ωdt −

∫ t+2π/ω

t
TgenΩgendt (6.7)

wheref is the aerodynamic forces in the three translations directions,v is the corresponding
velocities of the rotor center,T is the aerodynamic moment around the three axis,Ω is the
corresponding rotation speeds of the rotor center,Tgen is the generator torque andΩgen is the
generator speed.

Figure 6.4a shows the measured aerodynamic work and the aerodynamic damping for the ex-
ample turbine with the lateral tower mode as the only flexiblecomponent. The aerodynamic
damping is given in logarithmic decrement(η = 2πβ). The aerodynamic work is scaled by the
square of the oscillation amplitude, as suggested by Equation (6.6).

The aerodynamic work and damping is seen to be similar exceptfor a constant, as expected
from Equation (6.6). Using this relation between aerodynamic work and damping the results
from the full rotor CFD, AL and BEM comparison (cf. Table 6.1)can be converted into tower
damping and the importance of the differences can be evaluated. Figure 6.4b shows the com-
puted aerodynamic damping for the lateral aerodynamic workfrom Table 6.1. It is seen that
even though there are relatively large differences betweenthe aerodynamic work for the 6 m/s
case, the damping is so low that it do not have any practical importance whether the damping
is 0.05 or 0.15 % logarithmic decrement.

The reason for the difference in damping and aerodynamic work in Figure 6.4a and 6.4b is
that in Figure 6.4b the tower top is moved in a pure lateral motion of the rotor center whereas
in Figure 6.4a the tower mode motion also include some vertical motion and a rotation of the
tower top. Especially the aerodynamic work related to the rotation of the tower top extract some
extra energy work from the system.
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Figure 6.4. a) Aerodynamic work and damping for simulationswith only tower lateral flexibil-
ity. b) Damping computed on basis of Table 6.1.
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6.2.6 Comparison pure lateral oscillations and true tower mode

The first lateral tower mode of a true turbine differers from the pure lateral tower mode in-
vestigated in the previous section. Figure 6.5 shows the tower top motion for three different
wind speeds for the full flexible turbine. It is seen that the tower mode includes a considerably
amount of longitudinal tower motion, and that the mode changes for the different wind speeds.

Figure 6.6 shows the aerodynamic damping of first lateral tower mode for different wind
speeds. The damping is estimated, as above, by exciting the tower top until an amplitude of
1 m and than measure the decay. The individual aerodynamic work contributions from the
three translations and three rotations of the rotor center is also shown. The damping is seen to
stay between 1 and 2 % logarithmic decrement and peaking around 10 m/s, where the turbine is
heaviest loaded. It is seen that the damping contribution for the lateral motion (x) is increasing
for increasing wind speeds, in agreement with the analysis above (Figure 6.4), but especially the
rotation around they axis contribute negatively to the damping (positive aerodynamic work).
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Figure 6.5. Tower top displacement for first lateral tower modes. Top-down look with y-axis
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6.2.7 Summary

The analysis of lateral tower damping computations shows that the BEM corresponds well to
fully resolved rotor CFD and AL CFD results for any practicalapplications. There are some
disagreements, but they are related to small damping valuesand are considered unimportant.

6.3 Lateral Tower Load Mitigation by Generator Torque Control

This section analysis the potentials of using the generatortorque to reduce lateral tower vibra-
tions, and thereby reduce the tower and foundation fatigue.The tower motion can be reduced
by active damping systems. One actuator option is yaw: Ekelund [12] shows that the tower
motion can be reduced by an active yaw control, this will however require continuous yaw
actuation, which normal yaw systems are not designed for. Another actuator option is the gen-
erator torque, which affects the lateral tower mode throughthe reaction torque on the tower
top. Wright and Stol [18] implemented a lateral tower mode load reducing controller using
generator torque as an actuator, achieving a tower load reduction of 79 %. Such an additional
generator torque controller will also affect both the powerquality and the drive train loads, but
does not need any new actuator systems.

In this work, a low order system describing the essential dynamics involved in the lateral tower
motion is used to evaluate and design a lateral tower load reducing generator torque controller.
The low order model contains a tower mode, a drive train mode and generator speed. The
controller is tested in nonlinear aeroelastic simulationsusing the NREL 5 MW reference turbine
as example. The results shows that there is a potential for reducing the tower load without
increasing the drive train load too much, the example shows a40 % reduction of tower fatigue
load with a 10 % increase in drive train load.

6.3.1 The turbine model

Figure 6.7a shows the tower model seen from the upwind side. The tower height is denotedL
, tower stiffness and massEI(z) andm(z), respectively, tower top mass and inertiaM andIt ,
respectively, with applied generator torqueTg(t) and wave loadingf (t) at mean sea leveld.
The lateral tower deflection is denotedu(z, t).

The tower motion is approximated by its first mode shape. The mode shape is computed by a
finite difference discretization of the conical tower with top mass. Using this modal description
the tower deflection is given by

u(z, t)≡ φ(z)q(t) (6.8)

whereφ(z) is the first mode shape of the tower with tower top mass andq(t) is the time changes
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Figure 6.7. a) Tower model. b) drive train model .
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of tower position. Figure 6.7b shows the drive train model, which reference frame follows the
tower top rotationsu′(L, t). All the drive train component are related to the low speed shaft.
The generator inertiaIg, related to the low speed shaft, located to the right and the rotor inertia
Ir to the left connected by a torsional stiffnessKd and dampingCd. The azimuth angle of the
generator is given by the windup of the reference rotor speedΩ0t and the disturbance of the
generator azimuth angleψ(t), hence the resulting generator speed isΩg =Ω0+ψ̇. The azimuth
angle of the rotor is achieved by adding the deflection of the drive trainβ(t) to the azimuth angle
of the generator, hence the resulting rotor speed isΩr = Ω0+ ψ̇+ β̇.

With the one mode beam description of the tower (Equation (6.8)) and the drive train model
(Figure 6.7b) the kinetic energy of this system is given by

T =

∫ L

0

1
2

m(z)φ(z)2q̇(t)2dz+
1
2

Mφ(L)2q̇(t)2+
1
2

Itφ′(L)2q̇(t)2

+
1
2

Ir
(

ψ̇(t)+ β̇(t)+Ω0+φ′(L)q̇(t)
)2

+
1
2

Ig
(
ψ̇(t)+Ω0+φ′(L)q̇(t)

)2 (6.9)

and the potential energy is given by

V =

∫ L

0

1
2

EIφ′′(z)2q(t)2dz+
1
2

Kdβ(t)2−Tg(t)(ψ(t)+Ω0t)

−Ta(t)
(
ψ(t)+Ω0t +β(t)+φ′(L)q(t)

)
− f (t)φ(d)q(t) (6.10)

WhereTa(t) is the aerodynamic torque which can be described by the aerodynamic model

Ta =
1

Ωr
P(U,Ωr ,θ)≈

P0

Ω0
−P0

ψ̇(t)+ β̇(t)
Ω2

0

+
1

Ω0

(
∂P
∂θ

∣∣∣
θ0

θ1+
∂P
∂U

∣∣∣
U0

U1

)
(6.11)

whereP is the aerodynamic power, which is a function of wind speedU , rotor speedΩr and
pitch angleθ. The aerodynamic power function is linearized and the subscript 0 denote the
steady state value and the subscript 1 denote the linear variations around this steady state value.

Using Lagrange’s equation [13] the equations of motion for tower, drive-train and generator
degrees of freedom can be derived

Mz̈+Dż+Kz = f0+Ff (6.12)

wherez= [q(t),β(t),ψ(t)]T is a vector with the time dependent deflections and

M =



∫ L

0 m(z)φ(z)2dz+Mφ(L)+ (It + Ig+ Ir)φ′(L)2 Irφ′(L) (Ig+ Ir)φ′(L)
Irφ′(L) Ir Ir

(Ig+ Ir)φ′(L) Ir Ir + Ig


 (6.13)

D =




Ct +
(

P0
Ω2 − 1

Ω
∂P
∂Ω

∣∣
Ω

)
φ′(L)2

(
P0
Ω2 − 1

Ω
∂P
∂Ω

∣∣
Ω

)
φ′(L)

(
P0
Ω2 − 1

Ω
∂P
∂Ω

∣∣
Ω

)
φ′(L)(

P0
Ω2 − 1

Ω
∂P
∂Ω
∣∣
Ω

)
φ′(L) Cd +

P0
Ω2 − 1

Ω
∂P
∂Ω
∣∣
Ω

P0
Ω2 − 1

Ω
∂P
∂Ω
∣∣
Ω(

P0
Ω2 − 1

Ω
∂P
∂Ω

∣∣
Ω

)
φ′(L) P0

Ω2 − 1
Ω

∂P
∂Ω

∣∣
Ω

P0
Ω2 − 1

Ω
∂P
∂Ω

∣∣
Ω


 (6.14)

whereCt andCd are structural tower and drive-train damping, and

K =



∫ L

0 EI(z)φ′′(z)2dz 0 0
0 Kd 0
0 0 0


 (6.15)

where it is noted that the generator speed degree of freedom does not have any stiffness term.
The steady state forces on the system are given byf0 = [φ′(L)Tg,0,Ta,0,Ta,0]

T , where the steady
state generator torqueTg,0 is equal to the steady state aerodynamic torqueTa,0 =

P0
Ω0

. The linear
gains on the time varying generator torque, wave forces, wind speed and pitch changes are
given by

F =




0 φ(d) 1
Ω0

∂P
∂U

∣∣
U0

φ′(L) 1
Ω0

∂P
∂θ

∣∣
θ0

φ′(L)
0 0 1

Ω0

∂P
∂U

∣∣
U0

1
Ω0

∂P
∂θ

∣∣
θ0

1 0 1
Ω0

∂P
∂U

∣∣
U0

1
Ω0

∂P
∂θ

∣∣
θ0


 (6.16)

Risø–R–1803(EN) 63



and the time varying loadingf = [Tg,1(t), f (t),U1(t),θ1(t)]T . The steady state solution of the
tower and drive train state is given by

[
q0

β0

]
= K (1:2,1:2)f0,(1:2) (6.17)

where the subscript(1 : 2,1 : 2) denote the sub-matrix consisting of the first to second columns
of the first to second rows and the subscript(1 : 2) denote the first two elements of the vector.
Extracting this steady state solution from Equation (6.12)and rewriting the equations of motion
to first order form gives

ẋ = Ax +Bu (6.18)

where

x =




q1

β1

q̇1

β̇1

ψ̇



, A =

[
I2×2 02×3

−M−1K (1:2,1:2) −M−1D

]
, B =

[
02×4

M−1F

]
, u = f (6.19)

and subscript 1 denotes the time varying linear part. It is noted that the two structural degrees
of freedom results in two states each while the generator speed only results in one state, since
it don’t have any stiffness.

6.3.2 Power control

The aerodynamic damping of lateral tower mode of a pitch regulated turbine is lowest at low
wind speeds [11], so the main problems with lateral tower vibrations will predominantly appear
in the control region below rated wind speed. In this region,the turbine controller adjust the
rotor speed to optimize power extraction from the wind and the blade pitch is kept constant.

The power control below rated wind speed can be handled by prescribing a given power at any
generator speed. This can be done by a third order polynomial

P= KΩ3 ⇒ Tg =− P
Ω

=−KΩ2 ≈−KΩ2
0−2KΩ0ψ̇ ⇒

{
Tg,0 =−KΩ2

Tg,1 =−2KΩ0ψ̇
(6.20)

whereK = P0/Ω3
0 when the operational conditions are known. Implementing this controller

u(1) = −2KΩ0[0,0,0,0,1]x (the subscript (1) denote first element in the control vectoru) in
Equation (6.18) leads to the following extra terms in theA matrix

Ab =




02×6

0 0 0 0 2KΩ0
φ′(L)

Mtowet

0 0 0 0 2KΩ0
1
Ig

0 0 0 0 −2KΩ0

(
1
Ig
+ φ′(L)2

Mtowet

)




(6.21)

whereMtower =
∫ L

0 m(z)φ(z)2dz+Mφ(L)2+ Itφ′(L)2 is the modal tower mass. Equation (6.21)
shows that the power controller damps the generator motion (ψ̇) and the action on the generator
results in reactions on the drive train and tower.

6.3.3 Load reducing control

The load reducing control strategy is to superpose a generator torque to the power controllers
generator torque (Equation (6.20)). The reaction moment from the generator on the tower top
gives a force on the lateral tower motions, as seen in Equation (6.21), so the generator torque
can be used as actuator for a tower load reducing controller.The superposed generator torque
is computed by a PI controller based on a measurement of towertop accelerations, which in

64 Risø–R–1803(EN)



this model framework will is denoted ¨q. The PI controller’s integral gainKi acts on the tower
speed ˙q and a proportional gainKp on the acceleration. If instead the tower bottom strain was
measured theKi would be a differential gain in a PID controller. Implementing the integral gain
controlleru(1) = Ki [0,0,1,0,0]x adds the below extra terms to theA matrix

A i =




02×6

0 0 −Ki
φ′(L)

Mtower
0 0

0 0 −Ki
1
Ig

0 0

0 0 Ki

(
1
Ig
+

φ′(L)2
Mtowet

)
0 0




(6.22)

so a positiveKi gain will add a tower damping term, but this will also excite the drive train and
generator states, adding fatigue to drive train and reducing the power quality. The frequency of
the drive train is higher than the tower frequency, so there will not be any resonance amplifica-
tion but the drive train load will follow the superposed generator torque.

The proportional gain on the tower acceleration gives the control inputu(1) = Kp[0,0,1,0,0]ẋ
which implemented in Equation (6.18) together with the power and integral control terms be-
come

ẋ = (A+Ab+Ai)x+KpB(:,1)[0,0,1,0,0]ẋ ⇒

ẋ =
(
I3×3−KpB(:,1)[0,0,1,0,0]

)−1

︸ ︷︷ ︸
FAp

(A+Ab+Ai)x (6.23)

where the subscript(:,1) denote the first column in theB matrix and

FAp =




I2×2 02×3

0 0 1

1+
Kpφ′(L)
Mtower

0 0

0 0 − Kp

Ig

(
1+

Kpφ′(L)
Mtower

) 1 0

0 0 Kpφ′(L)

Mtower

(
1+

Kpφ′(L)
Mtower

) +
Kp

Ig

(
1+

Kpφ′(L)
Mtower

) 0 1




(6.24)

is multiplied onto theA matrix of the system (Equation (6.18)) including the controller el-
ements (Equation (6.21) and (6.22)). It is seen that the maineffect of the proportional gain
is a multiplication factor on the tower stiffness. The multiplication factor is less than one for
positiveKp decreasing the effective stiffness of the tower and therebydecreasing the tower fre-
quency. The integral gainKi on the other hand directly adds damping to the tower, which will
reduce the tower loads, but with the cost on drive train action and power quality. So the choice
of gain will be a trade off between wanted tower load reduction and the acceptable drive train
load and power quality.

6.3.4 Integral gain tuning

The integral gainKi can be chosen to give a prescribed tower damping. Disregarding propor-
tional gainKp = 0, the tower damping ratio is approximated by

ζ =
−Ac,(3,3)

2
√−Ac,(3,1)

(6.25)

whereAc = A +Ab+A i and the subscript numbers denote the row and column number ofthe
matrix element. Rearranging Equation (6.25) the gain is given by

Ki = 2ζ

√∫ L
0 EI(z)φ′′(z)2dzMtower

φ′(L)
−Ct

Mtower

φ′(L)
(6.26)

whereζ is the wanted damping ratio.
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6.3.5 Example

The 5 MW NREL reference wind turbine [14] (RWT) is used as an example. The operational
conditions are 6 m/s with 20.2 % turbulence (according to IEC61400-1 for a class C1 tur-
bine). The turbine is located at 20 m water depth, the wave conditions corresponds to north
sea conditions with a significant wave height on 1.63 m and a period on 4.53 s. An irregular
wave field described by a Pierson-Moskowitz spectrum is usedand the wave direction is 90
deg on the wind direction. The turbine is modeled in the nonlinear aeroelastic code HAWC2
[15–17], which includes wave loading using Morisons formula. Figure 6.8 shows the results
from nonlinear aeroelastic simulations of the turbine at the given operational conditions.

The equivalent wind speed extracted from aerodynamic powerwill be explained below. The
spectrum of the wave loading is seen to be cutoff at 0.8 Hz, where the energy anyway is very
low. This cutoff is an results of the wave modeling in HAWC2. The lateral tower bottom bend-
ing moment shows clear sign of resonance excitation of a low damped mode with the high
narrow peak in the power spectrum. The drive train spectrum shows coupling to the longitudi-
nal tower motion, but the main energy is at the free-free drive train frequency on around 1.8
Hz. This simulation shows the need of a lateral tower dampingdevise. The structural tower
damping in this simulation is 1.3 % log. decrement, which maybe low for a tower with passive
a tower damper.

External loading on low order model With a given free wind speed, turbulence level
and spectrum the response of the model depend on how the wind speed is sampled. The wind
speeds used in this analysis is generated and sampled by the aeroelastic code HAWC2 using a
rigid turbine, such that structural dynamic effects on the sampled wind speeds are removed.

The response of the rotor to the incoming wind field is an integrated response of the three blades
to the different regions of turbulent wind speeds they each meet. The free wind parameters are
given at one point at hub height, but on the one hand, the rotorcovers a large area, which
will smoothen some of the turbulence and on the other hand theblades rotate through different
regions of wind speed increasing the effective turbulence on the blade. Figure 6.9 shows the
time series and spectrum of the one point hub height wind, a mean of four fixed points in the
rotor plane, the mean of one point at 3/4 radius of each of the three rotating blade and finally a
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Figure 6.8. Results from aeroelastic simulations of the 5 MWRWT with power control but
without load reducing tower controller. From the top the figures shows the wind speed, wave
height, tower bottom bending moments, and drive train moment and generator power.
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Figure 6.9. Wind and wave loading on structure. a) time series of wind sampled at hub height,
as a mean of 4 points at the rotor plane, as one point on each rotating blade and computed
from the aerodynamic power, respectively. b) Power spectrum of wind and wave loading.

equivalent wind speed extracted from the aerodynamic rotorpower

P=
1
2

ρArCpU
3 ⇒ U =

(
2P

ρArCp

)1/3

(6.27)

whereAr is the rotor area,ρ is the air density andCp is the power coefficient.

The one point hub wind speed is the spectrum given by the standard. The four point rotor
plan mean have a slightly lower energy at very low frequencies because some of the large
scale low frequency turbulence structures are smoothed. Atthe higher frequencies there is no
correlation between the points and the energy level is the same as for the one point sampling.
The three point rotational sampling has a lower energy levelat low frequencies because the
rotational sampling chops up the large scale turbulence structures and thereby moves the energy
to higher frequencies, especial to 3P corresponding to the three blades rotating through the
same turbulence structure. There is also a peak at the first 3Pharmonic. The equitant wind
speed extracted for aerodynamic power have the same characteristic as the rotational sampled
wind speed at low frequencies, but at the higher frequenciesthe energy follows the single hub
point level. The equivalent wind integrates the response form all of the three blades and not just
one point on each, therefor the highest frequency contributions are smoothed compared to the
rotational sampled wind speed giving less energy on these frequencies.

The wave height used in the low order model is given by its spectrum and the transfer function
from wave height to wave forces is extracted from the HAWC2 simulations.

Response to external loading The power spectrums of the external wind and wave load-
ings are applied to the model (Equation (6.18)) and the frequency response is shown on fig-
ure 6.10. The response is shown both for the case with single point hub height sampled wind
speed and for the equivalent wind speed.

The responses is seen to be quite different for the drive train and generator states at low fre-
quencies, as expected, since the loading spectrums differsin that region (Figure 6.9). For the
further analysis the equivalent wind speed extracted from the aerodynamic power will be used,
since it is this integrated rotor power that the drive train actually will feel.

Table 6.2 shows the resonance frequencies and damping for tower and drive train mode and the
time constant for the generator state for different configurations of the model. The drive train
frequency is seen to shift from the first version with fixed generator speed (clamped-free drive
train frequency) to the other versions with generator control (free-free drive train frequency).

Figure 6.11 shows the response of the system with the power controller, and the power con-
troller together with the integral and proportional tower load reducing controllers, respectively.
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Figure 6.10. a) Power spectrum for combined wave and wind loading with two different wind
spectrum; blue=single point hub wind speed, red=equvilantwind speed extracted from aero-
dynamic power. b) Zoom of a).
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Figure 6.11. a) Frequency response for combined wave and wind loading with the different
controllers; blue=no control (K= Ki = Kp = 0), green=power control only (K6= 0,Ki = Kp =

0), red=integral and power control (K6= 0,Ki 6= 0,Kp = 0), megenta=proportional and power
control (K 6= 0,Ki = 0,Kp 6= 0). Solid line=tower mode (q), dashed line=drive train (β) and
dotted line=generator (ψ) b) Zoom.

The power controller changes the tower response at low frequencies because the power con-
troller couples the tower motion to the drive train and generator speed through the applied
generator torque (Equation (6.21)). Comparing Figure 6.10and 6.11 it is seen that the drive
train damping provided by the power controller (Equation (6.21)) suppresses the drive train
resonance peak at the free-free drive train frequency (1.8 Hz). The integral control gainKi =

1.3·106is chosen to give 10 % log.decrement tower damping using Equation (6.26). This inte-

Table 6.2. Frequencies and damping for the tower and drive train mode, and the time constant
for the generator state for different configurations of the model.

control gains tower drive train generator
K Ki Kp freq. damp. freq. damp. time con.

106 106 [Hz] ratio [%] [Hz] ratio [%] [s]
Fixed generator speed;ψ = ψ̇ = 0 0 0 0 0.27 -0.1 0.63 -0.8 -
Without control 0 0 0 0.28 0 1.82 0 18.2
Power control P0/Ω3

0 0 0 0.28 0.1 1.82 2.1 -151
Power and integral control P0/Ω3

0 1.3 0 0.28 1.7 1.82 2.1 -151
Power and proportional control P0/Ω3

0 0 −5 0.32 0.4 1.82 2.7 -151
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gral gain is seen to suppress the tower resonance peak, so, this controller will reduce the tower
fatigue considerably. The drive train response in the wave frequency range (0.15 Hz to 0.3 Hz)
increases considerably because of the increased generatortorque control action. The generator
state is only increased right at the tower frequency peak. So, the integral tower load controller
will increase the drive train load considerably and to some extent decrease the power quality.

The proportional tower load gainKp is chosen to be−5 ·106. The negative gain will increase
the tower resonance frequency (Equation (6.24)) and thereby move the resonance frequency
towards lower wave excitation energy (Figure 6.9b). Figure6.11 shows that the tower reso-
nance peak has moved to a higher frequency and that the over all tower response is decreased,
indicating less fatigue load. However, the wave loading is stochastic and broad banded so the
strategy to move the resonance frequency is connected with alarge uncertainty.

To evaluate the performance of the controllers the system issimulated in the time domain.

ẋ = (A +Ab+A i)x+B:,2:3[Fwave,U1] (6.28)

where the subscript(:,2 : 3) denote the second and third column of theB matrix. The wave
forces are extracted from HAWC2 simulations and the wind speedU1 is equivalent wind speed
extracted form the aerodynamic power (Equation (6.27)). The system is simulated for 600 s at 6
m/s with 20.2 % turbulence, as described above. The control performance is evaluated by com-
puting the equivalent fatigue load for the tower and drive train (m equal to 3 and 6 respectively)
and the standard deviation of the power. Figure 6.12 shows the results from simulations with
integral and proportional gain, respectively, normalizedwith the results for the power control
only case.

For the integral gain it is seen that the tower fatigue load drops off around a gain ofKi = 105 and
that the cost on the drive train start to increase around a gain of Ki = 107. The results indicate
that is should be possible to reduce the tower load considerably without increasing the drive
train load and reduce the power quality too much. The power spectrum proportional gain con-
troller (Figure 6.11) indicates that there could be some load reduction potentials. However the
time simulations shows that the result is very varying. Thisvariation is caused by the resonance
peak not being moved out of the wave spectrum, so it depends onthe individual realization of
the wave field how much the tower is excited. The large uncertainty in load reduction makes
the proportional control strategy unfavorable.
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Figure 6.12. Normalized equivalent tower and drive train load (m equal to 3 and 6 respectively)
and the standard deviation of the power for different integral control gains. The results are
normalized with respect to the case with power control only.The red dots show the same results
from nonlinear aeroelastic simulations with HAWC2. a) integral gain only and b) proportional
gain only.
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Nonlinear aeroelastic simulations To test the controller under more realistic conditions
the integral gain controller is implemented in the nonlinear aeroelastic code HAWC2. The con-
troller input is the tower top speed (the integral of the tower top acceleration) which is feed
through a second order low pass filter with a cutoff frequencyon 1 Hz. The filtered signal is
multiplied by theKi gain and superposed on the power controller’s reference torque and send to
the generator model. Figure 6.13 to 6.15 shows the lateral tower bottom bending moment, the
shaft torque and the power output, respectively, for simulations withKi = 0 andKi = 1.3 ·106.
Table 6.3 shows the fatigue and power quality for different gains. The results in this table are
also plotted on Figure 6.12. The results shows that tower oscillations are reduced considerably
(40 %) without increasing the drive train activity too much (10 %). The tower load reduction
for this full turbine system is less than predicted by the loworder model. This is because many
of the extra modes that exist in the full turbine model contributes to fatigue on the tower, but
it is only the first tower mode that is included in the low ordermodel and in the controller.
The main conclusion is anyhow the same, that is is possible toreduce the tower loads consid-
erably without increasing the drive train load compared to when the gain is kept below a given
threshold.

6.3.6 Summary

A low order model of tower, drive train and generator speed isderived, the model capture the
essential dynamic involved in lateral tower vibration and generator torque control of these. The
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Figure 6.13. Lateral tower bottom bending moment from nonlinear aeroelastic simulations. a)
whole time series, b) zoom.

0 100 200 300 400 500 600
−1600

−1400

−1200

−1000

−800

−600

−400

time [s]

to
rq

u
e

[k
N

m
]

(a)

100 110 120 130 140 150 160 170 180 190 200
−1600

−1400

−1200

−1000

−800

−600

−400

 

 
K

i
=0

K
i
=1.3*106

time [s]
(b)

Figure 6.14. Shaft torque from nonlinear aeroelastic simulations. a) whole time series, b) zoom.
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Figure 6.15. Power production from nonlinear aeroelastic simulations. a) whole time series, b)
zoom.

Table 6.3. Tower and drive train equivalent fatigue load (m=3 and m=6 respectively) and
standard deviation of power output. The results are normalized with respect to the results for
the case without tower load controller (Ki = 0).

Ki = 1 ·105 Ki = 1.3 ·106 Ki = 4 ·106

Equivalent lateral bending moment 0.89 0.61 0.55
Equivalent haft torque 1.00 1.10 1.33
Standard deviation of power 1.00 1.02 1.07

model is used to analyze and explain the use of a PI-controller based on tower top acceleration
to reduce lateral tower loads. The proportional term adds stiffness to the tower, increasing or
decreasing the resonance frequency, but it is hard to move the resonance frequency out of wave
excitation frequency band, so this control strategy is unreliable for load reduction. The integral
control strategy adds a damping term to the tower and is very efficient for reducing the tower
loads. When using a superimposed generator torque as actuator the controller also affects the
drive train and power quality. An integral controller is implemented in the nonlinear aeroelastic
code HAWC2 and the control strategy is tested in more realistic time simulations. The results
shows that the tower fatigue load can be reduced by 40 % with the cost of an increased drive
train fatigue load of only 10 %.

6.4 Lateral Tower Load Mitigation by Passive Yaw Slip

It has been suggested to use a passive yaw slip mechanism to ”kill” extensive lateral tower
vibrations. The idea is, that lateral tower oscillations will create a yaw moment if the nacelle-
rotor assembly center of gravity is not directly above the yaw axis. When the vibration reaches a
critical amplitude this yaw moment should be so large that the yaw bearing slides in the breaks,
extracting a large amount of energy and killing the vibrations. In this sections the feasibility of
such a system is evaluated by some simple estimations.

The tower top motion caused by harmonic tower mode vibrations can be described by

x= Asin(tω) (6.29)

whereA is the tower top deflection amplitude,t is time andω is the tower mode frequency. The
yaw moment caused by these the oscillations is then given by

Myaw=−lcgmAω2sin(tω) (6.30)

wherelcg is the distance from yaw axis to center of gravity of the nacelle-rotor assembly and
m is the total mass of the nacelle-rotor assembly.
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To compare this to yaw moments during normal operation the NREL 5 MW reference turbine
is used as an example. Figure 6.16a shows the statistics for yaw moments at normal operation
computed by the aeroelastic simulations tool HAWC2 and Figure 6.16b shows the time series
of the 24 m/s case which has the highest yaw moments.

The maximum yaw moments is seen to be around±15 MNm and a common reach value is
around±10 MNm. From a maintenance and power production point of viewit is desirable that
such a yaw system is not active during normal operation conditions. For a yaw slip mechanisms
not to be active during normal operation, it has to have a slipforce higher than at least the 10
MNm. Inserting this yaw moment and parameters from the 5 MW RWT into Equation (6.30)
gives a tower top amplitude of

A=
|Myaw|
lcgmω2 = 26.2m (6.31)

where |Myaw| = 10 MNm is the absolute value of the oscillating yaw moment,lcg = 1 m,
m= 350· 103 kg andω = 2.01 rad/s. Equation (6.31) shows that for this particular turbine
configuration it is unrealistic to have lateral tower mode induced yaw moments that exceed
the normal operation yaw moments. The only parameter that can be changes is the location
of center of gravity of the rotor-nacelle assembly, which can be alternated by another nacelle
design. Rearranging Equation (6.30) and assume the anA= 1 m tower top amplitude is critical
gives a desired location of center of gravity

lcg =
|Myaw|
Amω2 = 7.07m (6.32)

which is seen to be an unrealistic location of center of gravity since the nacelle on this turbine
only has an overhang of 5 m.
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7 Development of next generation aerodynamic

design tools

Author: Jens N. Sørensen, Valery L. Okulov and Nstor R. Garca

This chapter describes the development of design tools for optimum design of wind turbine
rotors using vortex modelling and viscous-inviscid interactive approaches. It comprises two
main parts:

1. The development of a viscous-inviscid interactive boundary layer code for design of air-
foils including rotational effects.

2. An inverse method for optimum design of wind turbine rotors based on an analytical
model of helical vortices.

In the following we give a summary of the achievements of the work and present some of the
most important results obtained during the project.

7.1 Viscous-Inviscid Interactive (VII) Boundary Layer Code

A computational model for predicting the aerodynamic behavior of airfoils of wind turbines
subject to steady and unsteady motions has been developed [1]. The model is based on a
viscous-inviscid interaction technique using strong coupling between the viscous and invis-
cid parts. The inviscid part is modeled using a panel method and the viscous part is modeled by
using a integral form of the laminar and turbulent boundary layer equations, including a quasi-
3D approach in order to include rotational effects. The codeis capable of predicting laminar to
turbulent transition either by using a numerical trip wire (fixed transition) or by using a mod-
ified en transition model (free transition). Validation of the steady two dimensional version of
the code has been carried out against experiments for different airfoil geometries and Reynolds
numbers. The unsteady version of the code has been benchmarked against experiments for dif-
ferent airfoil geometries at various reduced frequencies and oscillation amplitudes. In all cases,
excellent agreement has generally been obtained between computed and measured lift and drag
coefficients. The capability of the code to simulate a trailing edge flap under steady or unsteady
flow conditions has also been proven. A parametric study on rotational effects induced by Cori-
olis and centrifugal forces in the boundary layer equationsshows that the effect of rotation is to
decrease the growth of the boundary layer, delay the onset ofseparation, and increase the lift
coefficient and decrease the drag slightly.

A special inviscid version of the code has been developed to cope with massive separation.
This special model demands knowledge of the position of the separation point. However, with
a known position of the separation point, computed pressuredistributions are in excellent agree-
ment with experimental results.

Finally, the model has the possibility of taking into account wind tunnel blockage using an
additional source distribution modeling the influence of wind tunnel walls. This is important
when comparing results from the model with wind tunnel experiments.

In the following we will show some representative results obtained from the model.

7.1.1 Two-dimensional Steady VII Computations

This section presents a detailed comparison of lift and dragcoefficients as function of angle
of attack between measurements, the 2D Navier-Stokes flow solver EllipSys2D and viscous-
inviscid interactive simulations. Xfoil and EllipSys2D computations used for benchmarking in
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the present report where published by Bertagnolio et al. in 2001 in the Ris wind turbine airfoil
catalogue [3], with exception of the Navier-Stokes computations on the NACA 65415 airfoil
which have been carried out with the current EllipSys2D version. This airfoil is designed to
attain its minimum pressure at 0.5c, defined by the 2nd digit,a design lift coefficient at zero
angle of attack of 0.4, indicated by the 3rd digit, and with a 15% maximum thickness, given by
the last two digits. Measurements were performed at the NASAlow-turbulence pressure tunnel,
reported by Abbott and von Doenhoff [2]. The Reynolds numberin the experiments as well as
in the computations was 3.0 ·106. In the following, viscous-inviscid interactive computations
are referred to asQ3UIC in the figures. In Figure 7.1 (a), lift comparisons are presented for
angles of attack from 0 to 20 degrees. Both the VII solver and EllipSys2D are seen to over-
predict the lift coefficient in the whole range of angles of attack if compared with experimental
data. Drag curves are presented in Figure 7.1 (b). The VII predictions of drag at low angles
of attack are in good agreement with experiments although itseems to under-predict the drag
at angles of attack between 8◦ and 11◦. In this region EllipSys computations are in better
agreement with measured data.

Figure 7.2 compares computed pressure distributions with results from the EllipSys code (in the
figure VII computations are referred to aseNRG). A good agreement between VII computations
and EllipSys2D predictions of the surface pressure distributions is obtained at low angles of
attack, although small discrepancies appear on the suctionside of the trailing edge, Figures 7.2
(a) and (b). With increasing angle of attack, a progressive increase of the pressure peak near the
airfoil leading edge is predicted. A recovery of the pressure from the pressure peak downstream
is computed untilα= 9◦, where the turbulent flow undergoes trailing edge separation and hence
a region of nearly constant pressure is formed in the trailing edge vicinity. Laminar boundary
layers undergo easier separation while turbulent boundarylayers offer more resistance against
the adverse pressure gradient. The viscous-inviscid computations predict a faster movement
upstream of the turbulent separation point, as compared with EllipSys2D predictions. At the
same time, the constant pressure region created by the reversal flow is also predicted at a lower
absolute value by the VII computations, Figures 7.2 (c) and (d). When the separated region
increases, the airfoil enters stalled conditions and the differences between the two simulations
are reduced , Figures 7.2 (e) and (f).
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Figure 7.1. Lift and drag coefficient as function of angle of attack of the NACA 65415 at Re =
3.0 ·106.
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Figure 7.2. Surface pressure coefficients of the NACA 65415 Airfoil at Re = 3.0 ·106.
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To check the ability of the codes to compute wind turbine airfoils, Figure 7.3 compares VII
computations of the FFA W3-241 airfoil [4] with experimentsand computations using EllipSys
and XFOIL.
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Figure 7.3. Lift and drag coefficient as a function of the angle of attack of the FFA W3-241 at
Re= 1.5 ·106.

From the figures the VII code is seen to perform very well with respect to both lift and drag
predictions. Another wind turbine airfoil used for validating the code is the S814 airfoil. The
results from computations of this airfoil, shown in Figure 7.4, exhibit similarly good results.
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Figure 7.4. Lift and drag coefficient as a function of the angle of attack of the S814 at Re=
1.0 ·106.

Finally, in order to verify the ability of the code to computethick airfoils, computations were
carried out for the 30% thick FFA W3-301 airfoil [4]. The results from these computations are
shown in Figure 7.5. It appears clear that all computing codes have problems in determining
the correct behavior in the stalled region. This could be related with the high turbulence level
of the VELUX wind tunnel, which has an open section. The new VII code, however, seems
to be capable of predicting the maximum lift value closer to experiments. It should be empha-
sized, however, that as the thickness of the airfoil increases, the results sensitivity to turbulence
intensity may also increase. A higher turbulent intensity will trigger the laminar to turbulent
transition earlier, consequently the trailing edge separation will appear at lower angles of attack,
moving upstream and obtaining hence a lower maximum lift value. Here free transition com-
putations have been compared. It is important to note that EllipSys2D computations running in
fully turbulent mode are in much better agreement with experiments.
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Figure 7.5. Lift and drag coefficient as a function of the angle of attack of the FFA W3-301 at
Re= 1.5 ·106

7.1.2 Two-dimensional Unsteady VII Computations

Dynamic stall conditions are common on wind turbine rotors and affect their aerodynamic
performance. Pitch regulated machines will on the upper part of the rotors operate under stall
depending on the wind conditions while stall regulated and active stall machines will always
operate under dynamic stall conditions at high wind speeds.Dynamic stall on a wind turbine
blade can be induced by rotor yaw, blade control dynamics, flow control devices or changes in
inflow conditions due to the turbulent nature of the atmospheric boundary layer. Most of these
unsteady variations in flow characteristics are seen from the blade as a temporal change of
angle of attack. Hence accurate predictions of the blade dynamic loads are of great importance
in order to design new wind turbines blades with lower cost and better performance.

To validate the ability of the unsteady version of the viscous inviscid interactive model to sim-
ulate dynamic stall, comparisons of predicted aerodynamiccoefficientsCL andCD, are carried
out and compared to wind tunnel experiments. Simulations are performed by keeping the air-
foil at a fixed position, obtaining the change of the angle of attack according to variations of the
free stream flow direction as a function of time. Different values of the mean angle of attack
around which the airfoil oscillates,αm, various amplitudes of oscillation,A, as well as reduced
frequencies,kA, are chosen in order to cover dynamic airfoil performance under a wide span
of inflow conditions. Computations are run until a stable solution is reached, usually within no
more than a couple of complete loops. In order to force an early turbulent boundary layer, in all
cases the laminar to turbulent transition is forced at a position of 0.05c from the leading edge.
A modifieden method is used when the transition point moves upstream the boundary layer trip
position. The viscous-inviscid interactive single wake model is used in all the computations.

As a first validation case is chosen a NACA 0012 profile subjectto a harmonic pitch oscillation
aroundαm = 4◦ with an amplitudeA= 6◦, and a reduced frequency,kA = 0.021. The reduced
frequency is defined as:

kA =
π fA c
U∞

(7.1)

where fA is the oscillatory frequency,c is the chord length, andU∞ is the free stream velocity.

In Figure 7.6 experimental lift coefficients for static and oscillating airfoil characteristics, car-
ried out by Krzysiak and Narkiewicz [5], are compared against predictions of the VII code and
static measurements carried out at the Sandia National Laboratories [6]. A counterclockwise
loop is formed due to the attached nature of the boundary layer; unsteady terms on the boundary
layer equations together with the influence of the unsteady vortex wake induce the hysteresis
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effects. These effects grow with the frequency of the oscillating movement, i.e. at higherkA,
differences in lift between upstroke and down stroke motionare larger. The static experiments
of Krzysiak and Narkiewicz present a lower lift in the vicinity of α = 10◦, as compared to the
Sandia Labs measurements. The same difference is observed when comparing the dynamic lift
measurements of Krzysiak against the dynamic lift predictions of the VII code.
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Figure 7.6. Comparison between computed and measured dynamic/static lift data of the NACA
0012 airfoil with: αm = 4◦ , A= 6◦, kA = 0.021, and Re =1.63·106

As a second study case, the NACA 0015 airfoil was chosen. Experiments reported by Galbraith
et al. [7] performed at the University of Glasgow are used forvalidation of the unsteady version
of the VII code. In this case the NACA 0015 profile follows a harmonic pitch motion with a
mean angle of attack,αm = 11.37◦, an amplitude of oscillation,A = 4◦, and a reduced fre-
quency,kA = 0.102. Computed values of normal and tangential force coefficients are compared
against measurements in Figure 7.7. From Figure 7.7, predictions of dynamic forces around
the airfoil are seen to be in good agreement with measurements. Both computations and exper-
iments show how the flow fully reattaches to the airfoil surface aroundα = 3◦ during the down
stroke movement, creating a counter clockwise hysteresis lift loop.
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Figure 7.7. Comparison between computed and measured dynamic forces coefficients of the
NACA 0015 airfoil with:αm = 11.37◦ , A= 7.55◦ and kA = 0.102, and Re =1.5 ·106.

7.1.3 Two-dimensional Inviscid Double-Wake Computations

Because of poor performance of the single wake model at deep stall, a new approach for com-
puting airfoil performance at high angles of attack has beendeveloped. Knowing that the low
performance is due to the lack of accuracy of solving the integral boundary layer equations
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for flows with massive separation, in the new model the boundary layer is neglected and the
flow is considered purely inviscid. Instead the pressure in the separated region is modeled by
introducing an extended inviscid panel method. This model is referred to as the double wake
model, due to the dual treatment of the separated region in two shear layers leaving the airfoil
and converging downstream. Separation is one of the phenomena with the strongest influence
on the aerodynamic design of wind turbine blades. Lift and drag forces are strongly affected
when the flow undergoes separation, causing an exponential increment of drag at the same time
as the lift curve stalls.

The bubble type of separation has been studied widely and thedifficulties of modeling this
kind of phenomena stems from the problem of predicting the pressure level in the separated
region as well as determining the exact position where the attached boundary layer undergoes
separation. The double wake model will allow us to compute with a high degree of accuracy
the pressure distribution all over the airfoil, including the separated region. The double wake
model will generate a vortex sheet that leaves the airfoil from the separation point at the same
time as the trailing edge is releasing vorticity through another vortex sheet. The uniform vortex
distribution around the two wakes will influence the tangential velocities at the airfoil surface,
creating a region of reversed flow, which simulates the separation effect of the flow around an
airfoil at high angles of attack. The region of fluid surrounding the airfoil and the separated
wake is irrotational, and, assuming that the Mach number is low, compressibility is negligible.
The area in between the two wakes does not contain any significant vorticity and has a more or
less constant total pressure, and thus it is taken to be a potential flow region. The flow will then
be assumed irrotational everywhere except in the two confined sheets of constant vorticity that
forms the separated wake. The initial shape of the wake is obtained iteratively starting from an
initial condition. As initial condition the wake sheets arerepresented by two straight lines in
between the separation points and a common point downstream.

To validate the double wake model, the pressure distribution around the airfoil surface has
been computed for different airfoils at different angles ofattack in stalled conditions. Double
wake model predictions are compared against experiments. The separation position at which
the upper wake is shed is for all the considered cases obtained from the experimental pressure
distribution. In Figure 7.8 inviscid double wake model pressure computations are compared
against wind tunnel measured data at a Reynolds numberRe= 6.3 ·106. The simulated airfoil
is a NACA 4412 at 17.6 and 22.1 degrees angle of attack. Experimental data used for validation
was published in a NACA report by Robert M. Pinkerton [8]. Foran angle of attack of 17.6◦,
the separation point is forced at 0.5331c in simulations. The position of separation is obtained
from the experimental pressure distributions. At 22.1 degrees the separation position is forced
at 0.1674c, obtained with similar procedure as in the first case. Atα = 17.6◦ a good agreement
with measurements is achieved for both the upper and lower surface pressure distributions. The
pressure peak is captured with high accuracy and also the rate at which the pressure recovers
until separation is reached. In the case ofα = 22.1◦, a fairly good agreement is obtained for the
suction surface, despite the fact that the absolute value ofthe pressure peak is slightly under
predicted. In Figure 7.9, wind tunnel measurements of the surface pressure distribution around
a GA(W)-1 airfoil are compared against the double wake modelpredictions. The experiments
were carried out at the NASA Langley Wind Tunnel installation [9]. The Reynolds number
in the experiments isRe= 6.3 · 106 and a boundary layer trip was placed at 0.08c from the
leading edge. Comparisons are presented for angles of attack of α = 20.05◦ andα = 21.14◦ re-
spectively. In both cases, with the separation position determined from the experiments, nearly
perfect agreement is achieved.

The drawback of the double wake model is of course that it demands a priori knowledge of
the position of the separation point. In the present work we have only focused on comparing
airfoils where we know the position of the separation point.However, in a further development
of the code we intend to establish a data base on airfoil characteristics and employ this to
parameterize the position of the separation point. Thus, knowing the point of separation as a
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Figure 7.8. Surface pressure coefficients of the NACA 4412 airfoil at Re = 6.3 · 106 (a) α =

17.6◦; (b) α = 22.1◦
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Figure 7.9. Surface pressure coefficients of the GA(W)-1 airfoil at Re = 6.3 · 106, (a) α =

20.05◦; (b) α = 21.14◦

function of airfoil thickness, camber line, Reynolds number, type of airfoil, ambient turbulence,
etc, we hope to come up with a simple code capable of giving themain characteristics of airfoils
operating at high angles of attack.

7.1.4 Quasi Three-dimensional VII Computations

It is known that two dimensional measurements under predictthe lift forces on rotor blades in
stalled conditions. Centrifugal and Coriolis forces appearing in the rotational boundary layer
are the most likely causes of the enhanced aerodynamic forces. The centrifugal force will pro-
duce a span wise outward velocity component which will give rise to Coriolis forces that will
act as a favorable pressure gradient in the chord-wise direction. The centrifugal force also tends
to reduce the thickness of the boundary layer by the outward movement of the fluid, more com-
monly known as the centrifugal pumping effect. It is known that rotational effects are stronger
in regions close to the rotational axis and close to stall conditions, although a detailed study of
the phenomenon has not yet been done. One of the objectives ofthe present study is to obtain a
deeper understanding of the influence of rotation in the boundary layer. In the present work an
interactive viscous-inviscid model has been developed with capability of solving the quasi-3D
unsteady incompressible boundary layer equations. To reduce the 3D boundary layer equations
to the quasi-3D ones, an assumption that simplifies the radial derivatives has been implemented.
Hence the three dimensional boundary layer equations have been reduced to two dimensions
and formulated in integral form with additional rotationalterms that take into account the span-
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wise velocity profile. The errors introduced by these assumptions are known to be small due to
the small order of magnitude of the radial components of the boundary layer. With the present
method we are capable of predicting the influence of rotationon lift and drag performance of
a two-dimensional airfoil section of a rotating blade. Yawed flow, however, falls outside the
capabilities of the code. Radial derivatives are simplifiedassuming a high local aspect ratio of
the blade cross section.

To demonstrate the influence of the rotating effects in an airfoil section, a study of the aerody-
namic performance of a S809 airfoil subjected to rotation has been carried out and is presented
herein. The simulations are carried out at a Reynolds numberof 1.0 · 106. The transition of
the boundary layer from laminar to turbulent flow is forced at0.05c from the leading edge. In
Figures 7.10 lift variations as function of the chord-radius ratio, c/r, are shown for four values
of the rotational number,RO= Ω r/Urel , whereΩ is the rotational velocity of the rotor and
Urel is the local relative velocity. Generally as RO increases, maintaining a constant c/r ratio,
the lift increases. As a consequence, an increase in RO results in an increase in maximum lift
coefficient. In a similar way, as the ratio c/r increases, maintaining RO constant,α(CL =CLmax)

increases, retarding stall in a similar way. After the maximum lift is reached the airfoil stalls,
resulting in a negative lift slope forα > α(CL = Cmax), which increases for larger c/r ratios.
Centrifugal and Coriolis forces create a favorable pressure gradient that thins the boundary
layer and retards separation. At low angles of attack, i.e. attached flow, the rotational forces
induce a thinner boundary layer. Since separation is not involved, the higher lift is created be-
cause of the lower obstruction exhibited by the thin boundary layer against the free stream flow.
At higher angles of attack a delay in the separation locationis predicted due to the favorable
pressure gradient generated by rotation. A strong radial flow present in the bottom of a sepa-
rated boundary layer modifies actively the lift characteristics of the airfoil sections. The later
separation appears, the faster it moves towards the leadingedge after stall is reached, this ex-
plains the drastic decrement in lift forα > α(CL=CLmax). In the cases in which the influence
of Coriolis and centrifugal forces are sufficiently large, the flow remains attached to the airfoil
surface even at high angles of attack. In these cases the liftincreases linearly with the angle of
incidence.
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Figure 7.10. Influence of rotation on lift coefficient as function of angle of attack and rotational
number, RO. S809 airfoil. c/r varies from 0.1 to 0.9; Re=1.0 ·106.

7.2 Vortex models for optimum inverse design of wind turbine blades

7.2.1 Analytical models

In the history of rotor aerodynamics two ’schools’ have dominated the conceptual interpreta-
tion of the optimum rotor. In Russia, Joukowsky [10] defined the optimum rotor as one having
constant circulation along the blades, such that the vortexsystem for anNb bladed rotor consists
of Nb helical tip vortices of strengthΓ and an axial hub vortex of strength−NbΓ. A simplified
model of this vortex system can be obtained by representing it by a rotating horseshoe vor-
tex (see Figure 7.11 a). The other school, which essentiallywas formed by Prandtl and Betz
[11], assumed that optimum efficiency is obtained when the distribution of circulation along the
blades generates a rigid helicoidal wake that moves in the direction of its axis with a constant
velocity. Betz used a vortex model of the rotating blades based on the lifting-line technique of
Prandtl in which the vortex strength varies along the wingspan (Figure 7.11 b). This distribu-
tion, usually referred to as the Goldstein circulation function, is rather complex and difficult
to determine accurately [12]. In both cases only conceptualideas were outlined for rotors with
finite number of blades, whereas later theoretical works mainly concerned actuator disk theory.
Hence, in practice, wind turbine blades are modeled using Blade-Element Momentum (BEM)
theory, corrected by the tip correction of Prandtl.

It should be noted that none of the models fully simulates theactual vortex development behind
a turbine. Typically a system of trailing vortices are formed on the rotor due to the radial
distribution of circulation. This system further forms a set of helicoidal vortices, which, due
the mutual interaction between the vortex lines, starts to roll up, eventually forming a flow
field dominated by strong tip and root vortices. The roll-up process is initiated rather quickly
and typically the tip vortices are formed after a half rotation of the vortex system. Further
downstream, due to the inherent instability of the helical vortices, this system becomes unsteady
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and breaks down into small-scale turbulence, forming the far wake [13], [14].

Figure 7.11. Sketch of the vortex system corresponding to lifting line theory of the ideal pro-
peller of Joukowsky (a) and Betz (b)

Recently, we have derived an analytical solution for rotorswith Goldstein distributions of cir-
culation along the blade (Betz rotor) [15], [16] and [17] using a new analytical model of the
velocity field induced by helical vortices. In the present work we exploit the analytical model
further to develop a vortex theory of a rotor based on the concepts outlined by Joukowsky us-
ing constant circulation along the blades (Joukowsky rotor). Both solutions enable for the first
time to compare the theoretical maximum efficiency of wind turbines with Betz and Joukowsky
rotors.

In the vortex theory each of the blades is replaced by a lifting line on which the radial distri-
bution of bound vorticity is represented by the circulationΓ = Γ(r) which is a function of the
radial distance along the rotor blade. This results in a freevortex system consisting of helical
trailing vortices, as sketched in Figures 7.11. Using vortex theory, the bound vorticity serves to
produce the local lift on the blades while the trailing vortices induce the velocity field in the
rotor plane and in the wake. As illustrated in Figure 7.12 thevelocity vector in the rotor plane
is made up by the rotor angular velocityΩ0, the undisturbed wind speedU∞, the axial and cir-
cumferential velocity componentsuz0 anduθ0 , respectively, induced at a blade element in the
rotor plane by the tip vortices, andvθ0, the circumferential velocity induced by the hub vortex.
The fundamental expressions for the forces acting on a blade(Figure 7.12) is most conveniently
expressed by the Kutta-Joukowsky theorem, which in vector form reads

dL = ρV0×Γdr, (7.2)

wheredL is the lift force on a blade element of radial dimensiondr, V0 is the resultant relative
velocity andρ is the density of the air.

From the above equation, we can write the local torquedQof a rotor blade as follows

dQ= ρΓ(U∞ −uz0) r dr, (7.3)

Integrating this equation along the blades and summing up, we get the following expression for
the power output,P= Ω0Q,

P= ρNbΩ0

∫ R

0
Γ(U∞ −uz0) r dr, (7.4)

whereR is the radius of the rotor.

To determine the theoretical maximum efficiency of a rotor the power coefficient is introduced
as follows,
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CP = P/

(
1
2

ρπR2U3
∞

)
, (7.5)

The maximum power that can be extracted from a stream of air contained in an area equivalent
to that swept out by the rotor corresponds to the maximum value of the power coefficient.

The Joukowsky rotor

In the vortex theory of the Joukowsky rotor each of the bladesis replaced by a lifting line
about which the circulation associated with the bound vorticity is constant, resulting in a free
vortex system consisting of helical vortices trailing fromthe tips of the blades and a rectilinear
hub vortex. The vortex system may be interpreted as consisting of rotating horseshoe vortices
with cores of finite size, as sketched in Figure 7.11 (a) whichis reproduced from the original
Joukowsky drawing’s . The associated vortex system consists of a system of helical tip vortices
of finite vortex cores(ε << R) with constant pitchh and circulationΓ. The vortices move
downwind (in the case of a propeller) or upwind (in the case ofa wind turbine) with a constant
velocityU∞(1±ν) in the axial direction whereν denotes the difference between the wind speed
and the axial translational velocity of the vortices. Denoting the angle between the axis of the
tip vortex and the Trefftz plane asΦ (see Figure 7.12 a ), the helical pitch of the multiplet is
given as

h= 2π R tanΦ, or l/R= h/2πR= tanΦ (7.6)

Figure 7.12. Velocity and power triangles in the rotor planeof (a) Joukowsky rotor and (b) Betz
rotor.

The free vortex lines are made up by vortex cores of finite sizein order to avoid singular
behavior. The vortex cores are collinear to the axes of the helical lines and their vorticity is
assumed to be uniform and densely distributed across the core cross-section. In cylindrical
coordinates(r,θ,z), the components of fluid velocity induced byNb helical vortices in the
domain outside the vortex cores constitute an infinite series of Bessel functions. However,
following the approach by Okulov [18], these equations can be put into a relatively simple
closed form. Using the simplified equations derived by Okulov [18] it has for the first time
been possible to determine the performance of the Joukowskyrotor with finite blades. We will
not here go into the detail about these equations, but just show some relations resulting from
the analysis. Introducing the azimuthally averaged induced axial velocity as

〈uz〉θ =
1
2π

∫ 2π

0
uzdθ (7.7)
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we get

〈uz〉θ = 0 f or r > R and〈uz〉θ =
NbΓ
2πl

≡ const f or r < R (7.8)

It should be mentioned that the dimensionless averaged induced axial velocity in the wake
(0 < r < R), which is identical to the total axial wake interference factor a, takes the same
constant value

aU∞ ≡ 〈〈uz〉θ〉0<r<R =
NbΓ
2πl

(7.9)

The vortex system also includes a rectilinear hub vortex of strength−NbΓ, resulting in a simple
formula for the additional induced velocity that only consists of the circumferential component,

vθ =−ΓNb

2πr
, (7.10)

Defining the azimuthally averaged azimuthal velocity induced by the helical vortices as

〈uθ〉θ =
1
2π

∫ 2π

0
uθdθ, (7.11)

we get

vθ|r=R =−〈uθ〉θ |r=R (7.12)

To eliminate the singularity of the induced velocity field inthe vicinity of the vortex filament
the vortex system is represented by a set of helical vorticeswith finite core. For an unexpanded
wake originating from a rotor with infinitely many blades, the convective velocity of the vortex
system equals half the averaged induced axial velocity in the wake. This is sometimes referred
to as the ’roller-bearing analogy’. Although this approximation cannot be rigorously justified
for a vortex system consisting of a finite number of vortices,we employ the same analogy by
assuming that the helical vortices are transported with a relative axial speed,ν, that corresponds
to half the averaged induced velocity,

ν =
1
2

a
(R+ ε)

R
, (7.13)

where a correction of small expansion of the cross-section of the wake is made in order to
include the radius,ε, of the vortex cores. Introducing the non-dimensional pitch and radius of
the vortex core,σ = ε/R, from simple geometric considerations in the rotor plane the angular
pitch is given as

tanΦ|r=R=
U∞ −|uz0|r=R

Ω0R+
∣∣uθ0

∣∣
r=R−

∣∣vθ0

∣∣
r=R

=
U∞(1−ν)

Ω0R
=

U∞
[
1− 1

2a(1+σ)
]

Ω0R
=

l
R

(7.14)

Exploiting the various relations, the power can be determined from the following integral

P= ρπR2U3
∞a
(

1− a
2
(1+σ)

)(
1−a

∫ 1

0
ũz(x,0)xdx

)
(7.15)
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Performing the integration and introducing the dimensionless power coefficient, we get

CP = 2a

(
1− 1

2
aJ1

)(
1− 1

2
aJ3

)
(7.16)

whereJ1 = 1+σ andJ3 = 2
∫ 1

0 ũz(x,0)xdx. For a given helicoidal wake structure, the power
coefficient is seen to be uniquely determined, except for theparametera. Differentiation ofCP

with respect toa yields the maximum value ofCPmax, resulting in

a(CP =CPmax) =
2

3J1J3

(
J1+ J3−

√
J2

1 − J1J3+ J2
3

)
(7.17)

The Betz rotor

To compare the efficiency of the Joukowsky rotor with the Betzrotor, we here outline the main
points of the derivation of the aerodynamics of the Betz rotor (for more details we refer to [15]
and [16]). In this model, which is based on Lanchester-Prandtl wing theory, the vortex strength
of the lifting line varies along the blade span, following the so-called Goldstein distribution.
This results in a vortex sheet that is continuously shed fromthe trailing edge (Figure 7.11 b
). Betz showed that the ideal efficiency is obtained when the distribution of circulation along
the blade produces a rigidly moving helicoidal vortex sheetwith constant pitch,h, that moves
downwind (in the case of a propeller) or upwind (in the case ofa wind turbine) in the axial
direction of its axis with a constant velocityU∞(1±w). The associated vortex system to the
wake consists of a regular helical sheet extended to infinityin both directions. Denoting the
angle between the vortex sheet and the Trefftz plane asΦ (see Figure 7.12b), the pitch is given
as

h= 2πr tanΦ or, l/r = h/2πr = tanΦ (7.18)

wherer is the radial distance along the sheet. Since the sheet is translated with constant rel-
ative axial speed,wU∞, the induced velocity comprises only the componentwU∞cosΦ that is
’pushed’ normal to the screw surface (Figure 7.12b). The axial and circumferential velocity
componentsuz anduθ induced by the infinite sheet at the sheet itself are therefore given as

uθ = wU∞cosΦsinΦ and uz = wU∞cos2Φ (7.19)

From simple geometric considerations these equations are rewritten as

uθ = wU∞
xl

l2+ x2 , and uz = wU∞
x2

l2+ x2 , (7.20)

wherex= r/R is the dimensionless radius.

Goldstein [19] was the first who found an analytical solutionto the potential flow problem of
the moving associated vortex system consisting of an infinite helical vortex sheet. In his model
a dimensionless distributionG(x, l) of circulation was introduced as follows

NbΓ(x, l) = 2πlwU∞G(x, l) (7.21)

Using an infinite series of Bessel functions, Goldstein [19]succeeded in obtaining an analytical
solution to the problem, but forNb = 2 and 4 only. We have recently computed the Goldstein

Risø–R–1803(EN) 87



Figure 7.13. Computed Goldstein function for 3 blades and different values of helical pitch.

circulation functionG(x, l) for all relevant combinations of the wake pitchl and number of
rotor bladesNb. In Figure 7.13 we sketch the Goldstein function for a 3-bladed rotor subject to
various helical wake pitch values.

From geometric considerations in the rotor plane (Figure 7.12b), the angular pitch is given as

tanΦ =
U∞ − 1

2uz

Ω0r + 1
2uθ

=
U∞(1− 1

2w)

Ω0r
=

l
r

(7.22)

This equation can be also written as

Ω0l =U∞

(
1− 1

2
w

)
(7.23)

Combining the various equations, the power can be determined from the following integral

P= ρπR2U3
∞w
(

1− w
2

)∫ 1

0
2G(x, l)

(
1− w

2
x2

x2+ l2

)
xdx (7.24)

Performing the integration and introducing the dimensionless power coefficient, we get

CP = 2w

(
1− 1

2
w

)(
I1−

1
2

wI3

)
(7.25)

where

I1 = 2
∫ 1

0
G(x, l)xdx and I3 = 2

∫ 1

0
G(x, l)

x3dx
x2+ l2

(7.26)

The coefficientsI1 andI3 are usually referred to as the mass coefficient and the axial energy
factor, respectively.
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For a given helicoidal wake structure, the power and thrust coefficients are seen to be uniquely
determined, except for the parameterw. Differentiating ofCP with respect tow yields the
maximum value ofCPmax , resulting in

w(CP =CPmax) =
2

3I3

(
I1+ I3−

√
I2
1 − I1I3+ I2

3

)
(7.27)

7.2.2 Performance of the Joukowsky rotor and the Betz rotor

Figure 7.14 presents the optimum power coefficient of both models for different number of
blades as function of tip speed ratio. From the plots it is evident that the optimum power co-
efficient of the Joukowsky rotor for all number of blades is larger than that for the Betz rotor.
The difference, however, vanishes forλ → ∞ or for Nb → ∞, where both models tend towards
the Betz limit.

Figure 7.14. Power coefficients, CP, of an optimum rotor as function of tip speed ratio and
number of blades. Left: Joukowsky rotor; Right: Betz rotor.

In Figures 7.15 and 7.16 we show the resulting plan forms of the two optimized rotors at a tip
speed ratio of 4 and 8, respectively. It is here seen that the optimum twist (local pitch) distri-
bution is nearly the same for the two rotor designs. Furthermore, the two design tends toward
the same distributions of both twist and chord when increasing the tip speed ratio. The main
difference between the two designs are found at the root and the tip. This is easily explained by
the difference in the load distribution, where there Goldstein distribution of circulation causes
a more smooth gradual change in the chord distribution than the constant circulation in the
Joukowsky model.

7.2.3 Numerical model

For more general design purposes, a design and optimizationcode based on a lifting line
method coupled with a Lagrange multiplier approach has beendeveloped [20]. In this model
the circulation distribution minimizing the induced loss is determined, and the blade geom-
etry is consequently derived using 2-D airfoil data. Airfoil viscous drag contribution can be
included by adding it to the inviscid optimal solution. The code has been generalized to handle
planar as well as non-planar blade geometries.

Two representative configurations were studied: a simple winglet, familiar from the aviation
world, and a spiroid tip. The latter is a representative of what may be called highly nonplanar
configurations.
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(a) (b)

Figure 7.15. Comparison of chord- and twist-distributions(referred as pitch in the figure) at
tip speed ratio TSR=4. Left: Chord distribution rotor; Right: Twist distribution.

(a) (b)

Figure 7.16. Comparison of chord- and twist-distributions(referred as pitch in the figure) at
tip speed ratio TSR=8. Left: Chord distribution rotor; Right: Twist distribution.

As wake model, a simple fixed pitch helical wake is used. In thecase of non-planar blades, the
wake helix is locally displaced as required, but it maintains the same pitch. In the planar blade
case, it is completely consistent with the classical Goldstein solution. For non-planar blades,
however, there is no rigorous justification for the validityof the helical approach, and therefore
it must be considered as an approximation. An attempt to develop a more sophisticated wake
model, a hybrid between a free wake and a fixed pitch wake, was not successful. It was found
that, on one hand, the results obtained from this hybrid model are no more accurate than the
results obtained from the fixed pitch model. On the other hand, the hybrid model is much more
elaborate. Keeping in mind that for a preliminary design purposes a simple and robust code is
desired, it is reckoned that the fixed pitch model is sufficient for this purpose. A time-stepping
free wake code has been developed as a means of a further verification of the design code. In
practice, the usage of this free wake code has been limited due to the prohibitive long run times.
However, a few important insights were gained. It has been shown that, in the planar blade case,
there is a good agreement with the design code. Additionallyit has been shown that there is
a fair agreement with some reference results in a case of blades with winglets. An important
conclusion is that the design code is over-predicting the performance of tip devices due to the
simplifications inherent to the simple fixed-pitch wake model. While still effective, the effect
of these devices is actually confined to their immediate vicinity, as revealed by the free wake
analysis.
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7.3 Summary

A viscous-inviscid interactive (VII) boundary layer code for predicting airfoil performance has
been developed and validated. The code is capable of computing flows with moderate stall. The
model is extended with capabilities of simulating unsteadyflow behavior (e.g. pitching airfoils),
and it can take into consideration the influence of wind tunnel walls as well as rotational effects
(Coriolis and centrifugal forces). Further, a special version of the code has been developed to
cope with massive ’bubble-type’ stall using a two-wake panel distribution. As compared to
experiments and computed results using other codes, the code generally produces excellent
results.

Both analytical and numerical inverse vortex codes have been developed and employed to pre-
dict aerodynamic optimized rotor plan forms following conceptual ideas outline by early aero-
dynamic theories. The analytical models can be employed to carry out initial rotor design.
For more comprehensive design purposes, however, it is required to employ the numerical ap-
proach. In a continuation of the project the VII model will becoupled directly to the numerical
design code, hence combining the design of airfoil sectionswith the plan form of the rotor.
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8 Flatback Airfoil Analysis

Author: Niels N. Sørensen

8.1 Introduction

The present study deals with so-called flatback airfoils, which are airfoils especially designed to
have a relatively thick trailing edge. In contrast to truncated airfoils as discussed by Hoerner [1],
as e.g. the FX77-W-343 , flatback airfoils can be designed with a desired camber distribution.
Earlier studies [2],[3], have shown that flatback airfoils can obtain high lift at the cost of the
glide ratio. The increase in drag will mainly be caused by base drag on the vertical trailing edge
of the airfoil. In connection with the design of wind turbinerotors, flatback airfoils could be
attractive from a structural point of view, while for inboard stations where the drag is mainly
pointing in the thrust direction, the additional drag may beless important than the increase in
lift.

The present study includes the following ingredients: a 2D steady and unsteady evaluation of
the predictive capability of the RANS version of the EllipSys2D solver: a DDES study of a 3D
blade section to investigate some of the features observed in the 2D study: and finally, a small
example of a parametric study of possible ways to design a flatback airfoil.

8.2 Numerical study

8.2.1 Flow Solver

The in-house flow solver EllipSys in its 2D and 3D versions areused in all computations
presented in this paper. The code is developed in co-operation between the Department of
Mechanical Engineering at the Technical University of Denmark and The Department of Wind
Energy at Risø National Laboratory, Risø-DTU, see [4, 5] and[6].

The EllipSys code is second order accurate in time, using a second order backward differencing
time discretization and sub-iteration within each time step. In the present computation, the
diffusive terms are discretized with a second order centraldifferencing scheme. For the RANS
simulations the convective fluxes are computed using the third order accurate QUICK scheme
of Leonard [7]. For the DDES runs, the QUICK scheme is used forthe RANS regions while
a fourth order central scheme is used for the regions where the DDES model has switched to
Large Eddy Simulation (LES) technique.

In the present work the turbulence in the boundary layer is modeled by the k-ω Shear Stress
Transport (SST) eddy viscosity model [8] using it both in itsstandard RANS form but also
as a DES model as proposed by Strelets [9] with the Delayed Detached Eddy Simulation
(DDES) technique of Menter and Kuntz [10]. The effects of laminar/turbulent transition in
the boundary layer on the blade is modeled with theγ− R̃eθ correlation based transition model
of Menter [11], for the present implementation see [12].

For the 2D cases, both steady state simulations and transient simulations are performed using
the SIMPLE algorithm. For the unsteady simulations, a dimensionless time step of 1× 10−2

is used along with four sub-iterations within each timestep. The dimensionless timestep is
defined by Equation 8.1, whereT is time s,U∞ is the free stream velocity m/s, andC is the
airfoil chord m. For the 3D DDES cases, transient simulations are performed with a time step
of 1×10−2, here using 6 sub-iteration.

T∗ =
TU∞

C
. (8.1)
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The following inflow parameters are used. The inflow velocityis specified as 1 ms−1, a density
of 1 kgm−3 and the viscosity was adjusted to obtain the correct Reynolds number based on an
airfoil chord of 1 m. With a typical domain size of∼ 40 Chords, setting the specific dissipation
rateω = 1×104 s−1 a natural transition scenario withTu= 0.07% requires a inlet value of
the turbulent kinetic energyk = 1.14×10−2 m2s−1. For the 3D computations including the
tunnel walls, preventing the natural decay of turbulence taking place in the 2D simulations,
ω = 1×106 s−1 andk= 1.0×10−2 m2s−1 are used.

8.3 Grid generation

All meshes needed for the computations in the present work are generated with the 2D en-
hanced hyperbolic grid generation program HypGrid2D [13] as a 2D slice. The 3D grid is then
generated by sweeping the grid in the span-wise direction, see Figure 8.1.

For the 2D airfoil computations, an O-mesh configuration with 320 cells around the chordwise
direction, and 128 cells in the wall normal direction with a first cell height (∆y

C ) of 1× 10−6

assuringy+ < 2 and the outer domain boundary placed approximately 40 chord lengths away
from the surface. The surface of the airfoil is specified as no-slip, while outlet conditions as-
suming fully developed flow is specified for a region downstream of the airfoil covering form
-20 degree below to 45 degrees above horizontal. Along the remaining part of the outer bound-
ary inlet conditions are specified.

For the 3D DDES computations, a slightly more complex configuration is used to improve
the resolution in the airfoil wake. Here a inner O-mesh of 320chordwise and 160 normal
cells is embedded in a outer stretched Cartesian grid, see Figure 8.2. Horizontally the mesh
extends approximately 9 chords up- and downstream and vertically 4 chords above and below
the airfoil. For the stretched Cartesian grid, 128 cells areused in vertical direction, with 32
above and below the O-mesh section. In the horizontal direction, 32 cells are used upstream of
the O-mesh section, 96 cells along the O-mesh section and 96 cells downstream of the O-mesh
section. In the span-wise direction 128 cells are used alongthe 1×C span, with stretching
towards one side of the domain to allow resolution of the boundary layer developing on the
tunnel wall. The spanwise cell size at the tunnel wall is (∆y

C ) of 1×10−5 with expansion away

from the wall to give a cell size of (∆y
C ) of 1.26×10−2 over most of the spanwise length, see

Figure 8.3. The grid has in total 9.4 million cells. The surface of the airfoil is modeled as a no-
slip surface. The Cartesian upstream plane is specified as inlet while the Cartesian downstream
plane is specified as outlet using an assumption about fully developed flow. At the top and
bottom boundaries slip conditions are enforced, while the boundaries in the spanwise direction
are specified as slip for the tunnel center plane and no-slip at the tunnel wall where the boundary
layer is resolved. For some of the computations, the no-slipcondition at the wind tunnel wall
was changed to slip-conditions, to investigate the importance of the developing boundary layer
on the tunnel wall.

8.4 Verification of the predictive capability of EllipSys2D for flatback
airfoils

As the number of available flatback airfoils in the open literature is very limited, the FX77-W-
343, FX77-W-400 and FX77-W-500 series of truncated airfoils are included in the evaluation.
Even though these are designed in a different way, the problems associated with the numerical
computations must be expected to be very similar to the problems of predicting a flatback
airfoil. Afterwards, a series of real flatback airfoil, namely the FB-3500-0050, FB-3500-0400
and the FB-3500-1750 airfoils are examined.

The series of computations performed are listed in Table 8.1. As can be seen from the table,
both steady state and transient computations are performed, as well as using both fully turbulent
and transitional computations. One needs to be aware that the fully turbulent computations are
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Figure 8.1. Grid detail around the fb-3500-1750 airfoil, showing the inner part of the 2D O-
mesh topology.

Figure 8.2. Grid topology in the chordwise plane for the 3D DDES computation, showing a
sketch of the inner O-mesh embedded in the outer stretched Cartesian grid.

not necessarily equal to tripped experimental conditions,as the fully turbulent computations
only allows the fully turbulent boundary layer to develop without modelling the actual physics
of the tripping of the boundary layer. The modelling of the tripping could be attempted with the
transition model, by specifying a trip point and a production factor in the trip region. This was
not attempted here, as this requires parametric calibration to meet the experimental conditions
of the physical tripping.

Typically, in all computations we strived to reduce the residuals four orders of magnitude to
assure iterative convergence. Using steady state assumptions for thick airfoils, where separation
often will take place eg. at the thick trailing edge, iterative convergence may not be obtained.
In these cases the solution was continued until a periodic state was reached, and the averaged
value was computed. For the transient simulations, the sub-iterations assures that the residuals
stay approximately below the four order of magnitude criteria.
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Figure 8.3. 3D grid details, showing in the upper frame a 3D view of the blade section and
tunnel wall, and below the resolution normal to the wind tunnel wall.

8.4.1 FX77-w-XXX airfoils

The FX77-W-XXX geometries are constructed by truncating the original 34.3 percent thick
FX77-W-343 to obtain a 40 percent thick airfoil, FX77-W-400, and the 50 percent thick airfoil
FX77-W-500. As can be seen in Figure 8.4 the truncating process results in airfoils with much
lower camber.

Figure 8.4. The three FX77-W-XXX airfoil geometries, from left to right FX77-W-343, FX77-
W-400, FX77-W-500.
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Table 8.1. Computational cases

Airfoil Reynolds Number Steady Transient Turb/Transitional
FX77-W-343 3 mill. Steady - Transitional
FX77-W-343 3 mill. - 1×10−2 Transitional
FX77-W-400 4 mill. Steady - Transitional
FX77-W-400 4 mill. - 1×10−2 Transitional
FX77-W-500 2.75 mill. Steady - Transitional
FX77-W-500 2.75 mill. - 1×10−2 Transitional
FB-3500-0050 666.000 Steady - Turbulent
FB-3500-0050 666.000 Steady - Transitional
FB-3500-0050 666.000 - 1×10−2 Turbulent
FB-3500-0050 666.000 - 1×10−2 Transitional
FB-3500-0875 666.000 Steady - Turbulent
FB-3500-0875 666.000 Steady - Transitional
FB-3500-0875 666.000 - 1×10−2 Turbulent
FB-3500-0875 666.000 - 1×10−2 Transitional
FB-3500-1750 666.000 Steady - Turbulent
FB-3500-1750 666.000 Steady - Transitional
FB-3500-1750 666.000 - 1×10−2 Turbulent
FB-3500-1750 666.000 - 1×10−2 Transitional

The measurements for the FX77-W-XXX airfoils are taken fromAlthaus [14]. As all mea-
surements are performed without tripping of the boundary layer in The Laminar Wind Tunnel
of Stuttgart, a low turbulent scenario resulting in a natural transition scenario is used in the
computations. The results are shown in Figure 8.5 to Figure 8.7.

The FX77-W-343 shown in Figure 8.5, is well predicted with respect to lift, drag and pitching
moment. For this case, the steady state approximation and the transient computations predict
nearly identical results. There is a tendency towards laterseparation for the transient simula-
tions, but both the lift computed by the steady and transientmethodology are embedded in the
hysteresis of the measurements.

The FX77-W-400 airfoil is shown in Figure 8.6, is not quite aswell predicted as the thinner
FX77-W-343 airfoil. For the lift, the steady state simulations outperform the transient com-
putations, by capturing both the linear region plus stayingwithin the stall hysteresis loop of
the measurements. In contrast the tendency of high lift predictions by the transient method here
leads to over-prediction of Cl-max. For the drag, the results is opposite with superior agreement
of the transient predictions, actually capturing the drag level of 0.03.

For the FX77-W-500 airfoil, which is very different from a normal airfoil shape, the steady
state simulations give quite good results capturing the linear lift region well, along with the
Cl-max, see Figure 8.7. In contrast to the FX77-W-400, wheredrag was predicted best with the
transient method, the steady state simulations capture thedrag of the FX77-W-500 quite well.

Concluding from all of the tree airfoils, the less physical 2D steady state simulations in general
out-perform the more physical 2D transient simulations, bybetter capturing the Cl-max. Based
on drag the study is less conclusive, but generally both the transient and steady state simulations
capture the increasing drag trend when going from the thin 343 to the thick 500 airfoil.

8.4.2 FB-3500-XXXX airfoils

The FB series of airfoils was generated during the project ’Innovative Design Approaches
for Large Wind turbine Blades’ see [15]. The airfoil sectionis generated by combining the

Risø–R–1803(EN) 97



-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-10 -5  0  5  10  15  20  25  30

C
l

AOA [deg]

FX-77-W-343, Re=3 mill

Stuttgart
EllipSys, ST
EllipSys, US

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.01  0.02  0.03  0.04  0.05  0.06

C
l

Cd

FX-77-W-343, Re=3 mill

Stuttgart
EllipSys, ST
EllipSys, US

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

-15 -10 -5  0  5  10  15  20

C
m

AOA [deg]

FX-77-W-343, Re=3 mill

Stuttgart
EllipSys, ST
EllipSys, US

Figure 8.5. Comparison of measured and computed lift, drag and moment for the FX77-W-343
airfoil at a Reynolds number of 3 mill. Both steady and transient computations are shown.
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Figure 8.6. Comparison of measured and computed lift, drag and moment for the FX77-W-400
airfoil at a Reynolds number of 4 mill. Both steady and transient computations are shown.

suction side of a thick NREL airfoil section and the pressureside from a LS-1 series airfoil, see
Figure 8.8. The FB-3500 airfoil series was chosen due to availability of measurements in the
open literature, see [16]. The measured lift, drag and pitching moment published in [16] was
not available in digital form and were digitized from the pdfdocuments. While the coordinates
of the FB-4000-XXXX airfoil series are published, this is not the case of the FB-3500-XXXX
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Figure 8.7. Comparison of measured and computed lift, drag and moment for the FX77-W-500
airfoil at a Reynolds number of 2.75 mill. Both steady and transient computations are shown.

airfoil series. To circumvent this problem, the airfoil shape were digitized from [16]. To verify
that this procedure was sufficiently accurate the same procedure was first applied to the FB-
4000-XXXX series where actual coordinates exist. Comparing computations based on actual
coordinates with computations based on digitized coordinates showed negligible differences
confirming that the digitized coordinates could be used.

The measurements for the FB-3500-XXXX airfoil sections were performed in the aeronautic
wind tunnel at UC Davis, and with both free and tripped boundary layer. In the following,
computations using the EllipSys2D will be performed using both steady and transient compu-
tations. Both fully turbulent and free transitional computations are compared with the measured
values, see Figure 8.9 to Figure 8.14.

For the FB airfoil with the thinnest trailing edge, the FB-3500-0050 and free transition scenario
the lift slope is approximately correct while the zero lift angle is offset to higher angles of
attack, see Figure 8.9. Looking only at the lift for this case, the transient computations perform
better than the steady state computations. For the drag, theagreement is quite good for both
approaches, while the conclusion regarding the pitch moment may be less clear.

For the fixed transition case for the FB-3500-0050 airfoil, alinear lift region is nearly not
present in the measurements, see Figure 8.10. In contrast tothe prior example of free transition
case, the steady state computations of the lift is superior to the transient computations for the
fixed transition case. For the drag, the minimum drag is captured while the drag at higher AOA
is over-predicted.

For the FB-3500-0875 and the FB-3500-1750, the general picture is that for both lift and drag
the steady state results are superior to the transient results, see Figures 8.11 to 8.14. Generally,
both types of simulations capture the linear region that mayexist in the lift data quite well. The
Cl-max prediction by the steady state method is superior to the transient simulations for both
cases.

Figure 8.8. The three FB-3500-XXX airfoil geometries, fromleft to right FB-3500-0050, FB-
3500-0875, FB-3500-1750.

Based on all three airfoils the following can be stated: The method is capable of predicting
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Figure 8.9. Comparison of measured and computed lift, drag and moment for the FB-3500-
0050 airfoil at a Reynolds number of 666.000. Both steady andtransient computations are
shown for free transition conditions.
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Figure 8.10. Comparison of measured and computed lift, dragand moment for the FB-3500-
0050 airfoil at a Reynolds number of 666.000. Both steady andtransient computations are
shown for fully turbulent conditions.

the general trend caused by the switch from free to fixed transition both with respect to lift
and drag. As an overall consideration, the steady state predictions are in better agreement with
measurements. Additionally, the CFD predictions will be capable of predicting the relative
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Figure 8.11. Comparison of measured and computed lift, dragand moment for the FB-3500-
0875 airfoil at a Reynolds number of 666.000. Both steady andtransient computations are
shown for free transition conditions.
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Figure 8.12. Comparison of measured and computed lift, dragand moment for the FB-3500-
0875 airfoil at a Reynolds number of 666.000. Both steady andtransient computations are
shown for fully turbulent conditions.

performance of different flatback airfoils.

The conclusion that for many cases the steady state approximation out-performs the transient
methodology is surprising at first. The tendency seems to be more pronounced for the thicker
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Figure 8.13. Comparison of measured and computed lift, dragand moment for the FB-3500-
1750 airfoil at a Reynolds number of 666.000. Both steady andtransient computations are
shown for free transition conditions.
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Figure 8.14. Comparison of measured and computed lift, dragand moment for the FB-3500-
1750 airfoil at a Reynolds number of 666.000. Both steady andtransient computations are
shown for fully turbulent conditions.

airfoils where more unsteadiness is present in the form of separation and vortex shedding. To
further investigate this issue, some full 3D DES studies were performed to help understand this
paradox better.

102 Risø–R–1803(EN)



8.5 3D airfoil computations

Based on the peculiar behavior that the steady state out-performs the transient computations
for the 2D flatback airfoils, a 3D investigation of a flatback airfoil is performed.

It is well known, that 2D steady as well as 2D transient computations may produce bad results
for flow cases where 3D structures exist. As an example the flowaround a 2D cylinder or an
airfoil at high AOA. Here we will use the 3D DDES method to try and gain more understanding
of the problem observed in the 2D computations.

When an airfoil is mounted in a wind tunnel, as is the case of the UC Davis measurements,
interference between the airfoil and the wind tunnel walls must be expected at the junction
between those. Close to the wall, where the wind tunnel wallshave decelerated the flow, the
flow will have a larger tendency to stall and even form a horse shoe vortex upstream of the
blade. Different techniques exist to remedy this problem, energizing the flow by blowing or use
of vortex generators upstream of the blade, and eg. suction applied to the separated area behind
the blade.

As we do not have the details about the actual flow in the UC Davis tunnel, we merely aim
at illustrating a plausible explanation for the discrepancy between the computed and measured
data. As described in the section about grid generation, the3D model is set up having a span-
wise extent of two chords between the wind tunnel walls. In the actual simulation only half of
the domain is simulated using a symmetry plane at the tunnel center section and a no-slip wall
at the location of the wind tunnel wall, see Figure 8.2.

The main part of the 3D simulations are computed with a no-slip wind tunnel wall, but a single
simulation of a unconstrained situation is performed at 19 degrees angle of attack to illustrate
the effect of the wind tunnel wall boundary layer on the bladeflow. The flow conditions are
similar to the 2D conditions using a Reynolds number of 666.000. To avoid an excessive build-
up of the wall boundary layer on the tunnel wall, the inflow turbulence is set very low using
ω = 1×106 s−1 andk= 1.0×10−2 m2s−1.

Visualization of the wall constrained situation for the fivelowest angles of attack are shown
in Figure 8.15, clearly indicating the development of the flow pattern over the airfoil suction
side. In the range from 5 to 17 degrees, separation exists only at the blunt trailing edge, and
the spanwise lift and drag distributions stay nearly two dimensional, see Figure 8.16. When
increasing the angle of attack to 19 degree, the flow is suddenly separated and in contrast to
the lower angles of attack a highly 3D flow pattern is observed, see Figure 8.15. For the 19
degree angle of attack case, the lift and drag also reveals a strong variation along the span,
see Figure 8.16. The separation is triggered by the presenceof the wall, as illustrated by the
comparison with a 3D free flow where only a limited area of separated flow exists at the trailing
edge of the airfoil, see Figure 8.17. The increased tendencytowards separation of the wall
bounded wind tunnel flow, is caused by the deceleration of theflow in the boundary layer on
the wind tunnel wall.

In the previous 2D simulation, the wind tunnel walls are not represented, and the situation is
very similar to the free situation studied in the 19 degrees case. It is well know from previous
studies, that 2D simulations may heavily over predict the load in separated flows, e.g. drag
prediction of a cylinder or a blade at high angle of attack, see [17]. This is normally explained
by lack of 3D break-up of the flow structures. Comparing the lift and drag between the 2D
simulations, the 3D wall constrained tunnel simulation andthe 3D free configuration a very
revealing picture is seen, see Figure 8.18. Below onset of stall, all simulations predicts the
same lift irrespectively of them being 2D, 3D, steady or unsteady. At high angle of attack, the
3D unsteady simulations agree well with the 2D unsteady simulations as long as the separation
is limited. When the flow starts to be massively separated, the 3D simulations whether of wall
bounded or free, instead approach the 2D steady results. Theeffect of the wind tunnel wall
boundary layer is clearly seen in the earlier separation of the wall bounded flow.
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There is no good explanation why the 2D steady simulations should perform better than the
2D unsteady simulations, but similar results were seen in [17], where the 2D steady state
prediction of a flat plat at 90 degrees also was closer to the full 3D unsteady simulations and
measurements. One possible explanation why this happens could be the unphysical use of dif-
ferent time steps in different regions of the flow domain, which may help to break up large
coherent structures sometime seen in 2D time true simulations, and produce results closer to
3D reality and the break up seen also in the 3D separated DDES computations.

Additionally, the difference between the two 3D simulations tunnel and free, highlights a prob-
lem that may also exist in measurements. When performing tunnel measurements, especially
for thick airfoils or at high angle of attack the onset of stall may be heavily influenced by the
wall boundary layers on the wind tunnel walls.

Figure 8.15. Flow field around the 3D FB-3500-1750 airfoil inthe wind tunnel, at a Reynolds
number of 666.000. The airfoil is attached to the tunnel wallon the left side with a symmetry
condition at the right hand side of the span extent. The figureshow the following angles of
attack from the top left corner, (5, 10, 15, 17,19) degrees.
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Figure 8.16. Spanwise variation of the lift and drag along the span from the 3D tunnel compu-
tation of the FB-3500-1750 airfoil.

Figure 8.17. Comparison of the computed skin friction linesat the suction side of the wind
tunnel configuration right and the free configuration left, at 19 degrees angle of attack and a
Reynolds number of 666.000. The flow direction is right to left, and the airfoil section is seen
in a top down view. The spanwise variation introduced by the wind tunnel wall clearly changes
the flow situation compared to the free configuration.

8.6 Parametric Study, 2D

The examination of the applicability of EllipSys2D revealed that, for the present airfoils in
2D there is no advantages of applying unsteady simulations compared to a steady approach.
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Figure 8.18. Comparison of the computed lift between the measurements, the steady and un-
steady 2D simulations, the 3D tunnel simulations of the FB-3500-1750 airfoil. Additionally a
3D simulation at 19 degrees without tunnel wall is shown for comparison.
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The preliminary simulations showed that both for the truncated as well as the flatback airfoils,
the EllipSys code qualitatively is able to predict the change in lift and drag. Based on this we
conclude that the code can be used for parametric investigations of the aerodynamic behavior
of flatback airfoils.

As an example of a parametric study, the EllipSys2D code is used to study the effect of open-
ing the trailing edge towards the pressure and suction sidesof the airfoil, respectively. In the
present investigation, the trailing edge is opened 15 percent of the airfoil chord. The geometri-
cal changes made by opening the airfoil in the four differentways, is shown in Figure 8.19.

The original airfoil is a DU-97-W-300 airfoil of 30 percent thickness and we investigate a
Reynolds number of 3.2 million using natural transition in alow turbulent environment.

The effect of the parametric variation of the trailing edge opening can be seen in Figure 8.20.
Except for the case where the opening is done only towards thesuction side (Suction-15,
Pressure-00), all flatbacks exhibit improved max lift, see Figure 8.20. For all the parametric
variations an increased minimum drag level is observed, which should be expected. Looking at
theCl −Cd plot in Figure 8.20, the (Suction-00, Pressure-15) is clearly the most attractive with
respect to the increase in obtainable lift.

Based on this simple study, we must conclude that changing the present airfoil into a flatback
airfoil by simply opening the trailing edge, opening towards the pressure side should be pre-
ferred.

8.7 Conclusion

The EllipSys code is validated for airfoils with thick trailing edges as seen for truncated and
flatback airfoils. The agreement with measurements is not perfect, neither using 2D steady
or 2D unsteady simulations, but the solver is capable of predicting the correct qualitative be-
havior. There is a tendency that the 2D steady state simulations out-perform the 2D unsteady
simulations for this type of airfoil, where a large region ofseparated flow may exist.

To further investigate the 2D steady/unsteady issue, a series of 3D DDES simulations of the
FB3500-1750 airfoil in a wind tunnel configuration revealedthat to predict the correct stalling
behavior the inclusion of the tunnel walls may be important as these may also in the experiment
play an important role in the actual aerodynamic behavior.

Finally, the 2D EllipSys code was applied to a parametric study of the most efficient way of
opening an airfoil to obtain a flatback. This study clearly indicates that the present investigated
airfoil should be opened toward the pressure side to obtain the highestClmax.
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9 Design of a Thick, Flatback, Multi-Element

High-Lift Airfoil

Author: Frederik Zahle, Mac Gaunaa, Niels N. Sørensen, and Christian Bak

9.1 Introduction

In recent work at Risø DTU [4], it was shown that a higher loading towards the root of the blade
can yield a higher energy production of the rotor due to rotational effects normally ignored
in Blade Element Momentum (BEM) design codes. Based on numerical simulations on the
IEA 5MW Reference Wind Turbine (RWT), Johansen et al. [3] showed that it was possible to
gain an increase of 8% in the power coefficient at the expense of a 12% increase in the thrust
coefficient from a new design aiming at an optimal loading (a=1/3) along the entire blade.
Increased loading can be achieved by simply increasing the chord towards the root, as done
in the study by Johansen et al. [3]. However, limitations dueto transport requirements of the
blades and increases in extreme loads from an increased chord makes this choice undesirable.
A more desirable option would be to have airfoils in the root section capable of operating
at very high lift coefficients, thus reducing the chord length necessary to achieve the high
loading. However, using conventional thick airfoils it is not possible to achieve very high lift
coefficients. That is why recent studies have turned to multiple element airfoils [1, 14], which
by Gaunaa and Sørensen [1] were shown to be able to achieve lift coefficients above 2.5 using
a slat chord length of 30% of the main airfoil chord. In the work by Gaunaa and Sørensen [1],
slat configurations were designed using a panel code capableof handling multiple elements. A
parameter study was carried out to identify slat configurations that yielded a high performance,
and based on this study key factors were identified that influence the performance of a thick
multi-element airfoil.

The aim of the present work has been to design a thick flatback airfoil combined with a leading
edge slat suitable for wind tunnel testing and benchmarkingof numerical codes. In the present
work, the tools developed in [1, 14] have been extended to include an efficient optimization
method for designing the slat element, as well as a coupling of the optimization to the Navier-
Stokes solver EllipSys2D, replacing the previously used panel method. In the following chapter,
Chapter 10, the wind tunnel testing and detailed comparisonto numerical results are presented.

9.1.1 Multi-Element Airfoil Aerodynamics

To design an efficient multi-element airfoil it is necessaryto have a basic understanding of how
and why such a configuration can generate much higher lift coefficients compared to conven-
tional single element airfoils. An explanation of the aerodynamic mechanisms responsible for
generating high lift on multi-element airfoils can be foundby consulting the extensive work by
Smith [12]. Although this has also been explained in previous work by Gaunaa and Sørensen
[1] it will for completeness be summarised in this work as well. Smith [12] outlines five main
mechanisms at play:

1. Slat effect:Due to the circulation on the forward element (the slat), thepressure peak on
the main element is reduced, which effectively delays the stall on the main element. An
unavoidable consequence of this is that the load on the main element is reduced.

2. Circulation effect: Positioning the trailing edge of the forward element in the accelerated
flow over the main element gives rise to an increase in the meanangle of the flow leaving
the trailing edge of the forward element, increasing the circulation over this element.

3. Dumping effect: The accelerated flow at the trailing edge of the forward element makes
it possible to ’dump’ the forward element boundary layer at amuch higher velocity than
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under free-stream conditions. This reduces the required pressure recovery, thus delaying
stall and enabling high lift on the forward element.

4. Off-the-surface pressure recovery:Deceleration of the boundary layer from the forward
element to free-stream velocity takes place in the wake of the forward element without
contact with a wall, which is more efficient.

5. Fresh boundary layer effect:Breaking the flow into a number of independent boundary
layers on each element helps delay separation since a thin and ’fresh’ boundary layer is
better capable of withstanding an adverse pressure gradient than a thick one.

The above conclusions can help narrowing down the design space when designing and posi-
tioning a slat relative to a main element. The forward element should thus be placed in close
vicinity to the point of minimum pressure on the main airfoilto fulfil the first three items in the
list. For thin airfoils this point would be quite far forwardon the main element at approximately
x/c=0.02, which is also reflected in the designs of slats for commercial aircraft. However, on a
very thick airfoil this point is considerably further downstream at aboutx/c=0.1. Lastly, item
5 above suggests that the boundary layers on the elements should not mix, suggesting some
minimum distance between the elements exists below which the boundary layer profiles will
mix and ruin the ’fresh boundary layer effect’.

The angle of the slat relative to the main airfoil as well as its shape depend on a number of
factors that all interact. However, an optimal configuration in terms of maximum lift would be
one where both elements stall at approximately the same (highest possible) angle of attack. Due
to the upwash upstream of the main element the slat angle needs to be quite high to ensure that
the flow does not stall prematurely on the slat. Examples of optimal configurations obtained in
the work of Gaunaa and Sørensen [1] are shown in Figure 9.1.

Figure 9.1. Optimal configurations found using the fast design code developed by Gaunaa and
Sørensen [1] with cslat/cmain=0.3 and cslat/cmain=0.5.

9.2 2D Optimization of Slatted airfoils

9.2.1 Optimization Method

The optimization method developed for this work was programmed in Matlab, and uses the
built-in optimization routinefminsearchwhich employs a simplex optimization method. This
routine, however, is unbounded, and as such a community-developed wrapper routine named
fminsearchbndwas used in combination withfminsearch, which allows for bounds on the
optimization problem.

The overall goal of the optimization is to achieve a slat configuration which meets the target
lift coefficients at an angle of attack which can be either specified or unspecified, while also
providing a high maximum lift beyond the design point to provide enough lift reserve to tackle
large changes in angle of attack.

The optimizer attempts to minimize a function which is composed of three factors: a penalty
function which forces the optimizer towards achieving the desired lift coefficient,Cl ,target, at
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the specified target angle of attack,αtarget; the functionA1 which evaluates the lift-to-drag
ratio at the target angle of attack; and finally the functionA2, which seeks to maximize the lift
coefficient at some angle of attack, which the optimizer is free to tune. The two functionsA1

andA2 are normalized with a predefined reference lift-to-drag ratio and lift coefficient.

CostFun=−Penalty(A1+A2) (9.1)

with the penaltyfunction defined as

Penalty= exp

(
−
(
Cl (αtarget)−Cl ,target)

)2

2σpenalty

)
(9.2)

where the penalty varianceσ=0.02, and the two functionsA1 andA2 is defined as

A1 =
Cl (αtarget)

Cd(αtarget)
· 1
(Cl/Cd)target,re f

·Koptim (9.3)

A2 =
Cl (α)

Cl ,maxre f
· (1−Koptim) (9.4)

Koptim is a factor in the range [0:1] which biases the cost function towards obtaining the target
lift coefficient or lift-to-drag ratio. Although the lift-to-drag ratio is typically not as important
towards the root section of a blade as it is further out on the blade, it is needed in this opti-
mization method in order to force the optimization towards slat configurations where the flow
is attached.

For each optimization iteration two evaluations are thus needed: one at the target angle of
attack, and another at a free angle of attack which seeks to maximizeCl . Besides the angle of
attack, the optimization code was allowed to vary the following geometrical parameters of the
slat:

• Position of slat trailing edge measured as:

– Surface distance along main airfoil surface from leading edge,

– Normal distance from main airfoil surface to slat trailing edge.

• Slat angle relative to main airfoil.

• Slat camber (parabolic curve).

Figure 9.2 shows a schematic drawing of an airfoil fitted witha slat with the optimization
parameters indicated.

Slat
Normal Distance

angle

Flow angle

Surface Distance

Slat chord
Slat camber

Figure 9.2. Geometrical parameters that the optimization code can adjust to meet the optimiza-
tion targets.
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9.2.2 Navier-Stokes Solver

The in-house flow solver EllipSys2D is used for all CFD computations presented in this report.
The code is developed in co-operation between the Department of Mechanical Engineering at
the Technical University of Denmark and The Department of Wind Energy at Risø National
Laboratory, see [7, 8, 13]. The EllipSys code is a multiblockfinite volume discretization of the
incompressible Reynolds Averaged Navier-Stokes (RANS) equations in general curvilinear co-
ordinates. The code uses a collocated variable arrangement, with Rhie/Chow interpolation [11]
and either the SIMPLE algorithm of Patankar and Spalding [9,10] or the PISO algorithm of
Issa[2] to enforce the pressure/velocity coupling. The convective terms are discretized using a
third order QUICK upwind scheme, implemented using the deferred correction approach first
suggested by Khosla and Rubin CITE. Central differences areused for the viscous terms. In the
present work the turbulence in the boundary layer is modeledby thek−ω Shear Stress Trans-
port (SST) eddy viscosity model [6]. The laminar to turbulent transition process is modeled by
theγ−Reθ correlation based transition model of Menter et al. [5], forthe present implementa-
tion see [15]. The EllipSys code is parallelized with the Message-Passing Interface (MPI) for
executions on distributed memory machines, using a non-overlapping domain decomposition
technique.

The grids needed for the CFD computations are slightly more complicated than the ones used
for standard single element airfoils. Here, a topology withan inner topology consisting of
individual O-meshes around each of the elements were chosen, these being connected by an
additional block in the channel between the elements, see Figure 9.3 for an example of this grid
layout. The assembled inner grid topology is finally embedded in a O-mesh topology taking
the grid to the farfield region. The O- meshes around the airfoil sections each has 320 cells in
chordwise direction. The y+ of the normal cell at the walls are below 2, and the distance to the
other boundary is approximately 60 chords using in total 96 cells in this direction. The total
number of grid cells is∼47000.

Figure 9.3. Typical meshes generated using the automated meshing scripts, left: standard
patched grid, right: overset grid.

EllipSys2D is also capable of handling an overset grid topology [16]. Each group of patched
blocks is solved using boundary conditions on the overlapping interfaces based on interpolated
values of velocity from neighbouring grids using trilinearinterpolation. An explicit correction
of the conservation error is implemented, since a divergence free field is required to solve
the pressure-correction equation. The correction is placed in internal cells along the overset
boundaries and is distributed proportionally to the local mass flux. The solution of the pressure
is obtained on the basis of the mass fluxes calculated from themomentum equations. The grid
connectivity is handled using a procedure based on the inverse map method which allows very
fast location of points. The hole-cutting is fully automated and uses criteria based on local cell
volume and distance to the nearest wall to determine the holetopology. For the purposes of
automation of the grid generation, this procedure is very simple and robust, since it requires
very little user-intervention and rarely fails. Figure 9.3shows an example of such a mesh.
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9.2.3 Optimization Using CFD

The optimization code written in Matlab, described in Section 9.2, has been coupled to a multi-
element panel code as well as the CFD code EllipSys2D. In the present work, all optimizations
were carried out using the CFD code as flow solver.

The grid generation procedures described above were fully automated requiring only the ge-
ometry of the slat as input. The communication between Matlab and EllipSys2D was handled
from a series of Bash scripts that read files written by each code. Matlab ran in the background,
outputting for each optimization step a file containing the coordinates of the slat as well as
the required angle of attack. EllipSys was executed in parallel for maximum speed, and subse-
quently returned values ofCl andCd for the given configuration. Figure 9.4 shows a flowchart
summarising the optimization process.

AOA

Matlab:
fminsearchbnd
CostFun

Bash scriptairfoil
shape

File I/O

File I/O

mpirun

grid.X2D
grid.T2D

HypGrid
Generate mesh

EllipSys2D
Evaluate design

grid.force

Cl, Cd

Figure 9.4. Flowchart illustrating the different components in the optimization process.

All optimizations were carried out using steady state computations assuming fully turbulent
flow over the surface of the airfoil. The automated procedures were found to be very robust for
the setups tested in this work. With a mesh of 19 blocks of 642 parallelized across 19 processors
one CFD calculation completed in approximately 170 s yielding a total optimization time of
10 hours for 100 iterations (with two CFD calculations in each step) after which a converged
result was typically obtained.

9.3 Results

9.3.1 Baseline Flatback airfoil

The present study is based on the FFA-W3-360 airfoil which was modified in the following
manner:

• Increased thickness from 36% chord to 40% chord,

• Opening of trailing edge from 3.24% chord to 5.39% chord.

Figure 9.5 shows the original, the 40% thick airfoil and finally, the 40% thick flatback version
of the airfoil.

Figure 9.6 shows the computed lift coefficient versus angle of attack as well as the drag coeffi-
cient versus lift coefficient for the original 36% airfoil and the two modified airfoils computed
assuming fully turbulent flow on the surface of the airfoil. Looking firstly at the FFA-W3-340
airfoil, the increased thickness significantly lowersCl−max from 1.4 to 1.0 accompanied by an
increase in drag. Opening the trailing edge from 3.24% chordto 5.39% chord improvesCl−max

Risø–R–1803(EN) 113



-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

y/
c 

[-
]

x/c [-]

FFA-W3-360
FFA-W3-400

FFA-W3-400FB

Figure 9.5. FFA-W3 original profile compared to modified profiles.

from 1.0 to 1.24 and due to the increased base drag on the blunttrailing edge also increases
drag.
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Figure 9.6. Comparison of the original FFA-W3-360 airfoil with the modified 40% flatback
airfoil. Computations assumed fully turbulent flow on the surface of the profiles.

9.3.2 Slat Optimization

The parameterkoptim in the optimization algorithm (Eqns. 9.3, 9.4) controlled the weighing be-
tween emphasis on reaching the target lift or reaching the target lift-do-drag ratio, withkoptim=0
taking only the target lift into account andkoptim=1 only taking lift-to-drag into account. Four
optimizations with different values ofkoptim were carried out. The resulting configurations are
shown in Figure 9.7 with corresponding lift coefficients andlift-to-drag ratios plotted in Figure
9.8. Note that the lift coefficient is normalized relative tothe main airfoil chord length in all
plots in this work unless stated otherwise.

All four optimizations produce configurations that yieldedmaximum lift coefficients over 2.5
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Figure 9.7. Slat configurations for different values of koptim.
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Figure 9.8. Slat performance dependence on koptim. 2D lift coefficielt and lift to drag ratio as
function of incidence compared to the baseline airfoil.

which is twice that of the baseline maximum lift coefficient.Likewise, all configurations re-
sulted in a significant increase in the lift-to-drag ratio from 38 to values above 50. Looking at
the lift coefficient of the slat and main element individually with the slat lift coefficient normal-
ized with a chord of 0.3, it is seen in Figure 9.9 that the best performing slat has a maximum
lift coefficient of 6, and consistently performs better thanthe other three configurations. The
flow appears to stall earlier on the main element for increasing koptim, which is linked to the
fact that increasingkoptim results in the slat being placed further forward. Fork=0.25 the two
elements appear to stall at similar angles of attack, but dueto lack of resolution of the lift curve
the exact stall angles are not available. Of the four optimization results, it was concluded that
koptim=0.25 produced the best performing slat configuration with both the highest maximum
lift and relatively good lift-to-drag performance across awide range of angles of attack.

Figure 9.10 shows a comparison of the chosen slat configuration with the baseline flatback 40%
airfoil for both fully turbulent and transitional computations. As is evident, the lift of the slatted

Risø–R–1803(EN) 115



 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35

C
l [

-]

Incidence [deg.]

k=0.25
k=0.50
k=0.75
k=1.00

Figure 9.9. Slat performance dependence on koptim. Lines with dots: 2D slat lift coefficielt as
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airfoil is not as sensitive to transition as the baseline airfoil, whereas both airfoils exhibit sig-
nificant increases in the lift-to-drag ratio in the transitional computations. The small difference
between the predicted lift for the fully turbulent and transitional computations indicate that this
slatted airfoil could exhibit low sensitivity to surface roughness, which is a very desirable char-
acteristic for wind turbine airfoils. The larger dependence seen in the lift-to-drag ratio is not as
important on airfoil sections located near the root, since the drag component on the airfoil does
not play a significant role close to the root.
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Figure 9.10. 2D lift coefficielt and lift to drag ratio as function of incidence for fully turbulent
and transitional boundary layers (TI=0.1%).

With the geometry of the slat fixed, a sensitivity study was carried out where a number of
positions of the slat were investigated given by the grid shown in Figure 9.11, allowing only
the angle of the slat and the angle of attack to be optimized toreach the same goals as for
the original optimization. These degrees of freedom corresponded to those in the wind tunnel
tests described in Section 10, where the slat position and angle were adjustable. A total of 42
positions were computed with 60 CFD computations for each slat position optimization.

In order to reduce the computational cost of the study, all simulations were carried out using
a coarser grid where every second grid cell was removed from the domain. Comparing a rep-
resentative solution on a coarse grid with a solution on the finest grid used to optimize the
shape of the slat, Figure 9.12, it is seen that there is good agreement on the lift in the linear
region, whereas the coarse grid predicts stall at a lower AOAthan the fine grid solution. The
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flow angle in the parameter study.

lift-to-drag ratio shows poorer agreement due to the higherdrag on the coarser grid, with a
16% difference between the solutions at 14 deg. AOA. Assuming that the relative differences
between the fine and the coarse grids are consistent for the different slat positions, the absolute
difference between the two grid resolutions was not essential, since this parameter study was
mainly carried out to find the general trends related to the variation of position of the slat.
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Figure 9.12. 2D lift coefficielt and lift to drag ratio as function of incidence predicted using a
coarse grid compared to the fine grid otherwise used in this study.

Figure 9.13 shows contour plots ofCl−max andL/Dmax for the 42 positions. Figure 9.14 show
similar plots for an angle of attack 5 deg. lower than the optimized maximum lift angle of
attack, which is more representative of the performance theslat would deliver under operational
conditions. As is evident, high lift performance can be gained in a rather large but well-defined
region around the position found by the optimization. The lift-to-drag ratio appears to have a
maximum at the optimized position in Figure 9.13, which, however, for the lower angles of
attack in Figure 9.14 is a more flat optimum. This correspondswell to the lift-to-drag ratios
plotted in Figure 9.10, where the gradient inL/D generally is lower in ranges of angle of attack
8 deg. to 16 deg. than at angles close to stall.

9.4 Discussion

The results of the parameter study shown in Figures 9.13 and 9.14 revealed that a well-defined
region exists on the suction side of the main airfoil where the slat produced good performance.
This finding can be linked directly to the velocity magnitudeof the flow (or suction) over the
isolated main airfoil which reaches a maximum in exactly this region, as shown in Figure 9.15.
For reference, the trailing edge positions used in the parameter study is overlaid on the plot.
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Figure 9.13. Parameter study of slat positioning showing contours of Cl−maxand L/D at αClmax.
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Figure 9.14. Parameter study of slat positioning showing contours ofCl and L/D at α=αClmax-5.

This finding is in excellent agreement with the general aerodynamic characteristics of a multi-
element airfoil outlined in Section 9.1.1, which states that a forward element should indeed
be placed in a region with highest possible velocity to reduce the requirements of the pressure
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recovery, allowing very high suction peaks on the slat. Whenthe slat element is placed too
far away from the main airfoil, both the reduction of the suction peak on the main airfoil and
the increase in circulation on the slat element diminish, reducing the performance of the slat.
Likewise, if the slat is placed too far forward or backward, the same tendency of the slat to
perform worse is observed.
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Figure 9.15. Contours of velocity magnitude (left) and pressure coefficient (right) for the base-
line FFA-W3-3400FB profile at an incidence of 16 degrees.

Figure 9.16 shows the pressure distributions over the baseline airfoil compared to that of the
slatted airfoil. The suction peak on the isolated airfoil moves forward with increasing angle of
attack and is at 20 deg. angle of attack slightly forward of the location where the slat trailing
edge was positioned in the slatted configurations. At 8 deg. angle of attack the so-called circu-
lation effect is clearly visible with the suction peak of themain airfoil reduced significantly and
moved further aft. Notice also that at high angles of attack the pressure at the trailing edge of
the slat is equal to the pressure on the main airfoil, illustrating the ’dumping effect’ discussed
in Section 9.1.1. The flow thus leaves the slat trailing edge at a pressure coefficient equal to -3
at 24 deg. angle of attack, allowing the pressure coefficienton the slat to reach a minimum of
-10, which far exceeds that on the isolated main airfoil which reaches a minimum of 3.2 at 8
deg. angle of attack.

9.5 Conclusions

A new tool for optimization of multi-element airfoils has been developed that couples a Matlab-
based optimization algorithm with the 2D CFD solver EllipSys2D. The tool includes a fully
automated meshing method that uses the in-house mesh generator HypGrid2D. A typical opti-
mization required a total of 100 optimization steps each with 2 CFD computations. The FFA-
W3-340 airfoil was modified to have a thickness of 40%c and a so-called ’flatback’ trailing
edge with a thickness of 5.3%. A leading edge slat with 30% chord length was designed for the
modified airfoil, which achieved a maximum lift above 3.0 - a considerable improvement com-
pared to the baseline airfoil which had a maximum lift in the range of 1.3 to 1.6 depending on
transition properties. Also the lift-to-drag ratio was vastly improved from between 35 to 50 to
between 50 to 70. A parameter study where the position of the slat was systematically changed
with optimization of the slat angle showed that the slat performed well within a well-defined
region corresponding to the region on the main airfoil wherethe flow speed was greatest. These
findings are in good agreement with results in literature.

Risø–R–1803(EN) 119



-2

-1

 0

 1

 2

 3

 4

 5

-0.2  0  0.2  0.4  0.6  0.8  1

C
p 

[-
]

x/c [-]

Angle of attack = 8 deg.

Baseline
With slat

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-0.2  0  0.2  0.4  0.6  0.8  1

C
p 

[-
]

x/c [-]

Angle of attack = 16 deg.

Baseline
With slat

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

-0.2  0  0.2  0.4  0.6  0.8  1

C
p 

[-
]

x/c [-]

Angle of attack = 20 deg.

Baseline
With slat

-2

 0

 2

 4

 6

 8

 10

-0.2  0  0.2  0.4  0.6  0.8  1

C
p 

[-
]

x/c [-]

Angle of attack = 24 deg.

Baseline
With slat

Figure 9.16. Pressure distributions for baseline and slatted airfoil at various angles of attack.

120 Risø–R–1803(EN)



References

[1] M. Gaunaa and N. N. Sørensen. Thick multiple element airfoils for use on the inner part
of wind turbine rotors. InThe Science of Making Torque from Wind, Crete, Greece, June
2010.

[2] R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator-splitting.
journal of Computational Physics, 62:40–65, 1985.

[3] J. Johansen, H. A. Madsen, M. Gaunaa, and B. Christian. Design of a wind turbine rotor
for maximum aerodynamic efficiency.Wind Energy, 12:261–273, 2009.

[4] H. A. Madsen. Two modifications of the BEM method based on validation with results of
actuator disc results. Technical Report Risø-R-1611(EN),Risø National Laboratory for
Sustainable Energy DTU, 2006.

[5] F. Menter, R. Langtry, S. Likki, Y. Suzen, P. Huang, , and S. Volker. A correlation-based
transition model using local variables, part I - model formulation. In Proceedings of
ASME Turbo Expo 2004, Power for Land, Sea, and Air, number ASME. GT2004-53452,
Vienna, Austria, June 14-17 2004.

[6] F. R. Menter. Zonal two-equationk−ω models for aerodynamic flows.AIAA paper
93-2906, 1993.

[7] J. A. Michelsen. Basis3D—a platform for development of multiblock PDE solvers. Tech-
nical Report AFM 92-05, Technical University of Denmark, 1992.

[8] J. A. Michelsen. Block structured multigrid solution of2D and 3D elliptic PDEs. Tech-
nical Report AFM 94-06, Technical University of Denmark, 1994.

[9] S. V. Patankar.Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corpo-
ration, 1980.

[10] S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows.International Journal of Heat and Mass
Transfer, 15:1787–1806, 1972.

[11] C. M. Rhie and W. L. Chow. Numerical study of the turbulent flow past an aerofoil with
trailing edge separation.AIAA journal, 21:1525–1532, 1983.

[12] A. M. O. Smith. High-Lift Aerodynamics.Journal of Aircraft, 12(6):501–530, June 1975.
ISSN 0021-8669. doi: 10.2514/3.59830.

[13] N. N. Sørensen. General purpose flow solver applied to flow over hills. Technical Report
Risø-R-827(EN), Risoe National Laboratory, 1995.

[14] N. N. Sørensen. Prediction of multi-element airfoils with the EllipSys code. In T. Buhl,
editor, Research in Aeroelasticity EFP-2007-II, number Risø-R-1698(EN), chapter 3.
2007.

[15] N. N. Sørensen. CFD modelling of laminar-turbulent transition for airfoils and rotors
using theγ-Reθ model.Wind Energy, DOI 10.1002/we.325, 2009.

[16] F. Zahle. Wind Turbine Aerodynamics Using an Incompressible OversetGrid Method.
PhD thesis, Imperial College, London, 2006.

Risø–R–1803(EN) 121



10 Wind Tunnel Testing of a Thick, Flatback,

Multi-Element High-Lift Airfoil

Author: Frederik Zahle, Mac Gaunaa, Niels N. Sørensen, and Christian Bak

10.1 Introduction

This section describes the wind tunnel tests carried out in the LM Wind Power wind tunnel
on the thick, flatback, multi-element high-lift airfoil designed within the present project, as
described in Section 9. Additionally, detailed comparisons between experiment and 2D CFD
predictions of pressure distributions, lift and drag are discussed. The purpose of the wind tunnel
tests was to experimentally validate the designed airfoil as well as providing a dataset suitable
for validation of numerical codes.

The most common use of multi-element airfoils is within the aviation industry, where airfoils
with as many as five elements are used for high-lift landing configurations for commercial
airliners. An extensive list of literature exists on this subject, and for an overview of the ac-
curacy of state-of-the-art CFD tools in predicting flow overmulti-element airfoils, the reader
is referred to Rumsey and Ying [1]. The main conclusions fromthe paper are that 2D CFD
methods are generally capable of predicting surface pressures, skin friction, lift, and drag quite
accurately for angles of attack below stall; Velocity profiles with the exception of the slat wake
are predicted well; Effects due to Reynolds number also seemto be predicted well. The main
source of uncertainty in comparison to experimental results were concluded to be numerical
errors and lack of geometric or modeling fidelity, i.e. lack of grid resolution in critical areas
or simplification or inaccuracies of the modelled configuration. Rumsey et al. [2] discuss the
possible sources of the discrepancies between 2D and 3D CFD and nominally 2D experiments.
They firstly conclude that side-wall venting in the experiment is essential to avoid 3D flow
effects due to wall interference. In comparison to experimental results, however, even when
including side-walls and venting 3D CFD failed to accurately predict the flow around stall
whereas both 2D and 3D CFD were quite accurate for angles of attack up to 16 degrees.

The key difference between multi-element airfoils used in the aviation industry and airfoils
relevant to wind turbine applications is that aviation airfoils are generally quite thin, whereas
the use of multi-element airfoils on wind turbines is most relevant on the inner part of the
blade where the airfoil thickness is typically in excess of 40%. It is well-known that wind
tunnel testing on thick, high-lift airfoils presents several challenges compared to tests on thin
airfoils. Increased tunnel blockage, 3D tunnel effects dueto thicker boundary layers, high lift
coefficients at high angles of attack are all effects which adds considerable challenges to a
normal wind tunnel setup. The LM wind tunnel is designed for thin airfoils with maximum lift
coefficients in the range of 2-2.5 which made the present tests tread on unchartered territories.
In this light, it was evident that a quantification of the accuracy of both the numerical tools
as well as experimental wind tunnel testing of thick, high-lift, multiple element airfoils was
needed.

10.2 Wind Tunnel Setup

The lift is measured using either the surface pressure taps on the airfoil, which is a sectional
measurement, the load cell, which measures the total lift force on the entire airfoil, and finally
the wall pressures, which although the pressure is measuredalong a line, can be expected to
capture a somewhat three-dimensional lift coefficient based on the forces from the whole span
length.

The drag is also measured three different ways: Using load cells, from integration of the surface
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pressures from the pressure taps on the airfoil, or using a wake rake. The load cells give a three-
dimensional drag coefficient based on the loading on the whole wing. In contrast to this, the
drag as obtained from the integration of the pressure taps yield a local value. Since, however,
forces for the fluid acting on the airfoil are the sum of pressure forces acting normal to the
surface and viscous shear forces acting parallel to the surface, the pressure tab integration
forces do not include the contribution from viscous shear forces. These forces are negligible
in the lift direction, but can be significant in the drag direction below stall. Therefore, usually
the drag as obtained from the pressure integration should belower than the true value. The
last method of obtaining drag, with the wake rake, essentially integrating the velocity deficit
in the wake to obtain the drag via momentum considerations, include also the effects of the
viscous shear forces. The assumptions under which the underlying theory is derived include
stationary flow conditions, which effectively means that this method cannot be used under
stalled conditions. Another detail that should be mentioned regarding the drag measurements
is that uncertainties in defining effective flow direction/angle of attack arising from inductions
from non-uniform span-wise loading and/or tunnel induced velocities, influence the drag as
determined from surface pressure integration dramatically, whereas this has no bearing on the
drag as determined using a wake rake, which essentially determines the 2D drag.

Figure 10.1 shows a perspective view of the test setup for theairfoil fitted with a leading edge
slat. The drawing shows the slat (in darker green) and the wayin which it is mounted on the
side wall (in blue). The main airfoil (in light green) had a chord of 0.6 m and was fitted with
64 pressure taps, while the slat airfoil had a chord of 0.18 m and had 32 taps. The tunnel has
a width of 1.3 m, resulting in an aspect ratio of the main airfoil of 2.17. By repositioning the
leading edge within the grid on the side wall and adjusting the stepless bracket (in dark red)
the slat position and angle could be adjusted with a short turn-around time. The slat angle was
determined using two methods in parallel: One method used a custom made bracket that fitted
onto the leading edge of the slat, which together with a digital spirit level was used to measure
the angle. As a control method the normal distance from the main airfoil surface to the slat
trailing edge was measured to match that in the CFD calculations.

Figure 10.1. CAD drawing of the wind tunnel slat mounting designed by LM Wind Power.

10.3 Test Matrix

The wind tunnel tests were split into two campaigns, one on the isolated flatback airfoil, and
another on the combined flatback and slat airfoil. A total of 56 lift polars were measured, 25 on
the isolated airfoil and 31 on the multi-element airfoil.
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On the isolated flatback airfoil the following tests were performed:

• Smooth surface, four Reynolds numbers based on the main airfoil of: 1, 2, 3 and 4×106,

• Roughness, Vortex generators, Gurney flaps.

On the airfoil fitted with a slat the test matrix was more extensive since it involved repositioning
of the slat:

• Smooth surface, four Reynolds numbers based on the main airfoil of: 1, 2, 3 and 4×106,

• Seven slat positions,

• Slat angle variations at five positions,

• Roughness, Vortex generators, Gurney flaps at one position.

• Flow visualization using wool tufts.

To design the test matrix a parameter study similar to the onediscussed in Section 9 was carried
out where the slat angle was optimized for each position in the test setup grid. The resulting
contour plot of the optimization object function (see Section 9.2) is shown in Figure 10.2.
Marked with red filled circles are the five test positions discussed in this work. Position 5E is
the reference position where the slat was predicted to perform near optimum. This position lies
very close to the position found in the optimization study. The four off-design positions were
chosen with the intent of obtaining results with significantvariation in the performance of the
airfoil compared to the reference position.
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Figure 10.2. Contour plot of the objective function for the slat positioned within the test setup
grid optimized for best performance with the slat angle as the only design variable. The curved
line entering the picture from top right is the leading edge of the slat as mounted in the 5E
position.

10.4 Flatback Airfoil Results

This section summarises the results obtained from the wind tunnel tests on the isolated flatback
airfoil.
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Measurement sources

Figure 10.3 shows the airfoil tested with smooth surface conditions at a Reynolds number of
Re=2×106. The figure shows the three measurement sources available for both the lift and
drag. For the lift measurement the surface airfoil pressure(AP) and load cell measurements
(LC) agree very well between -10 degrees and 5 degrees angle of attack. At 5 degrees AOA
the load cell lift quite distinctly changes slope with a linear increase in lift up to 24 degrees
AOA. Except for a constant offset inCl , the 3D lift measurement methods (wall pressure (WP)
and load cell measuremens) are in close agreement with each other. Above 5 degrees angle
of attack the load cell (3D) measurements predicts a lowerCl than the (2D) airfoil pressure
measurement, indicating the onset of 3D flow situations in the tunnel at 5 degrees angle of
attack for this configuration. The almost constant offset between the load cell and wall pressure
lift is likely due to a single malfunctional pressure port inthe wall pressures. Notice also that
the load cell and wall pressure measurements do not display the same stall behaviour; in fact,
no stall really takes place when looking at the wall pressureand load cell data, whereas the
airfoil pressure indicates the onset of stall at approximately 14 degrees AOA.

Turning to the drag measurements, the airfoil pressure dragis at low angles of attack as ex-
pected lower than the wake rake drag. However, at 5 degrees AOA the airfoil pressure drag
increases drastically to a drag of 0.08 at 10 degrees AOA, where the wake rake drag is 0.023. It
is noted that the location where the drag obtained using the different methods starts differing is
the same angle for which the lift measurements indicated a 3Dflow situation in the tunnel. This
reassures the suspicion that after 5 degrees angle of attackthe flow in the tunnel is no longer
two-dimensional, but is influenced by tunnel effects.
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Figure 10.3. Lift and drag coefficients for the flatback airfoil tested at Re=2×106.

Figure 10.4 shows the lift and drag contributions at smooth conditions forRe=4×106. It is
noted that generally the same behaviour as forRe=2×106 is seen. In the case, however, the
onset of 3D flow conditions starts at a slightly lower angle ofattack and the stall behaviour
of the lift is changed to be more abrupt. It is also noted that maximum lift is also lower than
for Re=2×106. This is speculated to be due to an increased turbulence level in the tunnel for
increasing flow speed.

Dependence on turbulence intensity

The dependence on turbulence intensity (TI) in the CFD simulations was investigated with
simulations with a turbulence intensity of 0.1%, 0.2%, 0.3%, and 0.4%, see Figure 10.5. The
measured airfoil stalls considerably later than in the computed results, regardless of TI in the
computations. The computations exhibit a very high dependence on TI with as much as 30%
variation in the predictedCl−max. The computations with low TI agree well for negative angles
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Figure 10.4. Lift and drag coefficients for the flatback airfoil tested at Re=4×106.

of attack, whereas at higher angles of attack the agreement is best with computations with
higher TI. The same tendency is seen for the drag where the agreement is quite fair with low TI
computations at low angles of attack, and likewise good withhigh TI computations at higher
angles of attack. These results suggest that the wind tunneltunnel turbulence intensity varies
with angle of attack of the blade section. Work carried out internally at LM Wind Power in fact
showed that at low angles of attack the measured turbulence intensity immediately upstream of
the airfoil was 0.2% whereas close to stall it was 0.35%. Based on the LM measurements and
the results shown in 10.5 it was decided that all computations in this study would be carried
out using a TI=0.3%.
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Figure 10.5. Lift and drag coefficients for the flatback airfoil at Re=2×106 computed with
different inflow turbulence intensities.

Pressure distributions

Figure 10.6 shows the pressure distributions at four anglesof attack at a Reynolds number
of 2×106. The computed results shown are for a turbulence intensity of 0.3%. At low angles
of attack the agreement is very good between EllipSys2D and the experiment, whereas at 12
degrees angles of attack, the computed flow is stalled which is not the case in the experiment.

Dependence on Reynolds number

The wind tunnel tests were carried out at four Reynolds numbers of 1,2, and 4×106. Fig-
ure 10.7 shows the experimental results for the flatback airfoil for these Reynolds numbers.
The results show a quite large dependence on Reynolds numberwith a decreasingCl−max for
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Figure 10.6. Pressure coefficients for the flatback airfoil tested at Re=2×106.

increasing Reynolds number.
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Figure 10.7. Lift and drag coefficients for the flatback airfoil tested at at various Reynolds
numbers.

Dependence on surface roughness

Figure 10.8 shows the roughness sensitivity of the airfoil,and the ability of vortex generators
to restore a large part of the lifting performance of the soiled airfoil.

Surface mounted devices

Figure 10.9 shows the effect of adding vortex generators, gurney flaps or both on the lifting
capabilities of a smooth airfoil. It is seen that vortex generators located at x/c=0.2 increase the
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Figure 10.8. Lift and drag coefficients for the flatback airfoil with rough surface conditions
tested at Re=2×106.

lift with a factor of approx. 2/3. The addition of gurney flapsto either case only increase the lift
a small value compared to this.
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Figure 10.9. Lift and drag coefficients for the flatback airfoil fitted with various devices tested
at Re=2×106.

10.5 Flatback Airfoil with Slat Results

In this section the main results from the wind tunnel tests onthe flatback airfoil fitted with a
slat is presented. As described in Section 10.3 seven different slat positions were investigated;
here, five positions (5E, 7F, 7A, 1C and 3H) will be discussed.All wind tunnel results are not
corrected for wind tunnel effects, and unless otherwise specified all lift coefficients are based
on integration of the pressure distributions over each element and drag is based on the wake
rake measurements. The lift shown from the CFD simulations is likewise based on on surface
pressure only, and drag is likewise based on both skin friction and pressure contributions. The
CFD simulations are all computed with free transition and aninflow turbulence intensity of
0.3% unless otherwise specified. For each position the integrated lift and drag coefficients are
presented as well as pressure distributions for 12 degrees and 22 degrees angle of attack. Lift
coefficients for the combined main and slat elements are normalized with the main element
chord, whereas lift coefficients for each individual element are normalized with their respective
chord lengths. Likewise for the drag coefficients.

Measurement sources

Figure 10.10 shows the lift and drag coefficients for the multi-element airfoil with the slat in po-
sition 5E showing the various measurement sources in the experiment. In contrast to the obser-
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vations made on the isolated flatback airfoil, the load cell lift coefficient has an offset compared
to the two other measurements where for the isolated flatbackairfoil it was the wall pressure
measurement that was offset relative to the two other sources. All measurement sources exhibit
the same ’kink’ in the lift curve at approximately 5 degrees angle of attack. The airfoil pressure
and wall pressure lift coefficient curves have a different slope across all angles of attack with
the largest differences appearing above 10 degrees angle ofattack. The wall pressure and airfoil
pressure maximum lift coefficient differ by 8%.

In the drag measurements the load cell drag is also offset compared to the two other sources,
which is consistent with the isolated flatback measurements. The airfoil pressure drag and
wall pressure drag are in good agreement for angles of attackbelow 4 degrees after which the
airfoil pressure drag increases drastically reaching 0.3 at 20 degrees angle of attack. The drastic
increase is consistent with the point at which the ’kink’ occurs in the lift measurements, and
likewise consistent with the observations made on the isolated flatback airfoil. The load cell
drag behaves very similarly to the wall pressure drag with a similar increase at 4 degrees angle
of attack.
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Figure 10.10. Total lift and drag coefficients for the slatted airfoil with the slat in position 5E
tested at Re=2×106 showing measurements from three different sources for liftand drag (AP:
Airfoil pressure, LC: Load cell, WP: Wall pressure, WR: Wakerake).

The most likely explanation for this large discrepancy in the measurement sources is that con-
siderable 3D flow effects occur along the wind tunnel side walls affecting the flow along the
entire span of the wind tunnel model. These effects will be discussed in more detail later in this
chapter.

Wake rake measurements of drag on a thick airfoil are associated with some degree of uncer-
tainty since the flow can be unsteady for a large range of angles of attack. However, this source
was concluded to be the most reliable source of measurement compared to the load cell and
airfoil pressure measurements and as such, results presented in the following sections will use
only the wake rake measurement.

Dependence on turbulence intensity

Figure 10.11 shows the lift and drag coefficients for position 5E with a slat angle,β=-29.35
deg, where the experimental results are compared to EllipSys2D computations with different
inflow turbulence intensities (TI). In line with the resultsfor the isolated flatback airfoil, the
computations showed a fairly large dependence on TI, with a decrease inCl−maxwith increasing
TI. While there is improvement in the agreement atCl−max with computations of increasing
TI, the difference in slope between computations and experimental data is still fairly large
regardless of TI. The simulated and measured drag are in reasonably good agreement up to 14
degrees angle of attack, after which the measured drag is considerably lower than the simulated.
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Figure 10.11. Lift and drag coefficients for the flatback airfoil tested at Re=2×106.

Position 5E

Figure 10.12 shows the multi-element airfoil with the slat in position 5E and a slat angle,β=-
29.4 degrees which in the remainder of this report will be referred to as the reference position.
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Figure 10.12. Configuration with the slat in position 5E.

Figure 10.13 shows integrated lift and drag coefficients forboth experiment and computations.
Consider first the curves for the total lift (sum of lift on theslat and main airfoil), where sim-
ilarly to the experimental results for the isolated flatbackairfoil, there is a distinct kink in the
lift curve around 5 degrees angle of attack where the experimental data shifts from being above
the CFD results to below. Likewise, the slope of the experimental lift curve decreases at this
point, which is not consistent with the CFD computations. The stall in the experimental data is
quite smooth and reaches a maximum at 24 degrees angle of attack, but is not fully stalled until
beyond 30 degrees angle of attack. The CFD simulations around stall are not entirely consistent
and exhibit an unnatural kink at 26 degrees angle of attack, at which point the airfoil stalls very
abruptly. It is likely that the separation process on the airfoil is quite unsteady, and that a steady
state simulation therefore does not capture this process entirely correctly.

Turning to the individual contributions to lift from the main and slat elements it is clear that
the kink in the experimental lift data at 5 degrees angle of attack and subsequent discrepancy
with simulations beyond this point stems primarily from themain element. The measured and
predicted lift on the slat element, however, are in better agreement, although the experimental
data has a lower lift curve slope than the predicted. The stall point on the two elements are
not captured very accurately by the computations. The stallon the main element is in the
measurements quite smooth, whereas the compuatations predict a more abrupt stall. On the slat
element, the stall occurs at 29 degrees angle of attack in theexperiment whereas it is predicted
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at 26 deg angle of attack in the simulations.

The drag is in reasonably good agreement in the range -8 degrees to 14 degrees angle of attack,
although the predicted drag is considerably smoother than the experimental data. This could
be related to differences in the transition points in the computations and experiment, which in
both cases were un-tripped. Beyond 14 degrees angle of attack the predicted drag is higher than
the measured. This could be caused by unsteadiness in the flowor that the wake is too wide for
the wake rake to capture completely.
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Figure 10.13. Lift and drag coefficients for the slatted airfoil with the slat in position 5E tested
at Re=2×106.

Pressure coefficients for angles of attack of 12 degrees and 22 degrees are shown in Figure
10.14. Note that the pressure distributions are plotted with normalized relative chord lengths
with the leading edges of both elements placed atx/c=0. For both angles of attack there is
a fairly high discrepancy between the measurements and computations, although the same
general features are similar with characteristic kinks in the pressure distributions on the two
elements in the region where they are in close proximity. In this gap region region, the compu-
tations predict a higher suction than observed in the experiment. For both angles of attack the
computations predict a higher suction peak on the slat than measured in the experiment, and
likewise on the main element, the suction peak is stronger inthe computations. At 22 degrees
angle of attack, the computed pressure distribution is veryflat at the trailing edge whereas the
gradient is slightly higher in the measurements, indicating that the flow is partially stalled in
the computations and not in the measurements.
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Figure 10.14. Pressure coefficients for the slatted airfoilwith the slat in position 5E tested at
Re=2×106.
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Position 7F

Figure 10.15 shows the multi-element airfoil with the slat in position 7F and a slat angle,β=-
34.2 degrees
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Figure 10.15. Configuration with the slat in position 7F.

Similarly to position 5E a kink also exists in the experimental lift curve at around 3-5 degrees
angle of attack, where the measured lift shifts from being higher than to lower than the predicted
lift. At position 7F the performance of the airfoil is predicted to be poorer than at the reference
position 5E, see Figure 10.2. As shown in Figure 10.16 this isindeed also the case in the
experiment, where the maximum lift is predicted to be 2.83, where position 5E had a maximum
lift of 3.03. Cl−max in the experiment is at approximately 24 degrees and also forthis case the
stall is very gentle. In the computations the airfoil does not stall until 28 degrees angle of attack,
although the lift curve exhibits the same tendency as in position 5E where the curve initially
flattens out after which the lift increases again before dropping steeply.

The individual components of lift for each element exhibit in many respects the same features as
for position 5E, with a significantly better agreement between measurements and computations
on the slat, and quite poor agreement on the main element. Theagreement for the slat is very
good up until 22 degrees angle of attack where beyond this point the computations predict a
continued increase in lift, which is not seen in the experiment. Notice that the main element
stalls significantly earlier in both experiment and computations.

The measured and computed drag is for this slat position in very poor agreement. For the
range 0 degrees to 20 degrees angle of attack the measured drag is largely unchanged whereas
the computed drag is steadily increasing. As for position 5E, the measured wake rake drag
appears to be unusable beyond 20 degrees angle of attack, since the drag here is measured to
be decreasing.

The two pressure distributions shown in Figure 10.17 exhibit the same tendencies as for posi-
tion 5E. The computations predict a slightly lower pressureon the pressure side of the slat than
observed in the experiment, and likewise on the main element, the suction is slightly higher in
the computations. The suction peak on the slat is at 12 degrees slightly higher than the mea-
surements in agreement with position 5E. The opposite is thecase at 22 degrees angle of attack.
As for position 5E the pressure gradient on the main element is flatter at the trailing edge than
observed in the experiment.

Position 7A

Figure 10.18 shows the multi-element airfoil with the slat in position 7A and a slat angle,
β=-29.4 degrees.

General tendencies for the lift distributions are very similar for this case to the two previously
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Figure 10.16. Lift and drag coefficients for the slatted airfoil with the slat in position 7F tested
at Re=2×106.
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Figure 10.17. Pressure coefficients for the slatted airfoilwith the slat in position 7F tested at
Re=2×106.
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Figure 10.18. Configuration with the slat in position 7A.

discussed. The most notable difference between this case and the other two cases is that the
computations predict a very early trailing edge separationon the main airfoil at approximately
16 degrees angle of attack, which is not seen in the experiment. This results in the slat lift also
being in poor agreement beyond this angle of attack. The explanation for the early stall in the
computations can be given by referring to [3] who explains this by the so-called ’circulation
effect’, also summarised in Section 9.1.1. With the slat in avery forward position, it is not very
effective at limiting the suction peak on the main airfoil, which subsequently stalls earlier.

The predicted and measured drag for this case exhibit very similar trends for angles of attack of
-2 degrees to 16 degrees except for a consistently higher drag level in the simulations. Above
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16 degrees angle of attack the two diverge significantly witha considerably higher drag in the
computations.
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Figure 10.19. Lift and drag coefficients for the slatted airfoil with the slat in position 7A tested
at Re=2×106.

The pressure distributions shown in Figure 10.20 are in goodagreement at 12 degrees angle
of attack on both the main and slat elements. In contrast to the previous positions discussed,
the pressure on the slat and main airfoil in the region where they are in close proximity are
in very good agreement. At 22 degrees angle of attack the trailing edge stall on the main ele-
ment is clearly visible in the computations, whereas the flowis still completely attached in the
experiment.
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Figure 10.20. Pressure coefficients for the slatted airfoilwith the slat in position 7A tested at
Re=2×106.

Position 1C

Figure 10.21 shows the multi-element airfoil with the slat in position 1C and a slat angle,β=-
23.7 degrees

At position 1C the characteristic kink in the measured lift at low angle of attack appears signif-
icantly later at approximately 8 degrees to 10. degrees angle of attack. The measured total lift
coefficient reaches a maximum at approximately 20 degrees angle of attack and remains con-
stant up to 26 degrees angle of attack after which it begins todrop. The computations predict
a significantly higher maximum lift of 3.4 at 24 degrees angleof attack followed by a abrupt
stall. The lift coefficient on the slat is in relatively poorer agreement at this position than at the
previous with a change in slope in the experiment not observed in the computations. The slat
stalls at 20 degrees angle of attack in the experiment where it continues to provide lift up to 24
degrees angle of attack in the computations.
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Figure 10.21. Configuration with the slat in position 1C.

The predicted and measured drag are in reasonably good agreement over the full range of
incidences exhibiting the same tendencies. There is, however, still a difference in the overall
level, which for this case is higher in the measurements, which is opposite to positions 7A.
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Figure 10.22. Lift and drag coefficients for the slatted airfoil with the slat in position 1C tested
at Re=2×106.

As for position 7A the pressure distributions are in reasonably good agreement at 12 degrees
angle of attack except for a lower suction peak on the slat in the computations. At 22 degrees
angle of attack the flow is clearly completely stalled on the slat in the experimental data, which
causes the pressure distribution on the main element to alsobe in poor agreement to the com-
putations. On the pressure side, however, the agreement is quite good.

Position 3H

Figure 10.24 shows the multi-element airfoil with the slat in position 3H and a slat angle,
β=-25.6 degrees

The final position discussed in this report, position 3H was expected to be the poorest of all
configurations tested. In this respect the computations andmeasurements are in good agree-
ment predicting a maximum lift of approximately 2.85. The measured stall angle is, however,
considerably higher than the computed, since the flow on boththe slat and main airfoil stalls
later than predicted, see Figure 10.25.

Similarly to a few of the other cases the measured drag does not increase noticeably with
increasing angle of attack, which is consistently the case in the computations. In the range 0
degrees to 10 degrees angle of attack, however, the agreement is fair, see Figure 10.25.
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Figure 10.23. Pressure coefficients for the slatted airfoilwith the slat in position 1C tested at
Re=2×106.
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Figure 10.24. Configuration with the slat in position 3H.
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Figure 10.25. Lift and drag coefficients for the slatted airfoil with the slat in position 3H tested
at Re=2×106.

Similar to other cases where the slat and main airfoil are in very close proximity, the com-
putations predict a considerably higher suction on both slat and main element in the region
where they are in close proximity, see Figure 10.26. At 12 degrees angle of attack, however,
the agreement is quite good except in the above mentioned region. At 24 degrees angle of attack
the same tendency of the flow stalling earlier on the main element in the computations than in
the measurements is observed.
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Figure 10.26. Pressure coefficients for the slatted airfoilwith the slat in position 3H tested at
Re=2×106.

Position 5E - Variation of slat angle β

At position 5E, threeβ angles in addition to the reference angle were investigated. Figure 10.27
shows the airfoil configuration with the four different slatangles.
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Figure 10.27. Configuration with the slat in position 5E for variousβ angles.

Figure 10.28 shows the computed and measured lift coefficients for the five slat angles. Ellip-
Sys2D predicts the reference position withβ=-29.35 degrees to be the best, closely followed
by β=-27.35 degrees, whereas the two configurations with higherslat inclinations perform very
poorly. In the experiment, however, the trend is completelydifferent, with the configurations
with high slat inclination out-performing the two others quite significantly. The explanation
for the large discrepancy is explained when looking closer at the lift curves for each element
individually.

Figure 10.29 shows the lift and drag coefficients for the slatin position 5E withβ=-35.35
degrees. The flow stalls at around 17 degrees angle of attack on the main element in the com-
putations, whereas the flow does not appear to stall until beyond 30 degrees in the experiment.
The lack of stall observed here corresponds well to the observations made for all other config-
urations, where the flow over the main airfoil consistently stalled later in the experiment than
in the computations. It is likely that wind tunnel effects stemming both from side wall interfer-
ence as well as blockage effects at high angles of attack severely influenced the experimental
results.
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Figure 10.28. Lift coefficients for the flatback airfoil withthe slat in position 5E for variousβ
angles tested at Re=2×106.

−20 −10 0 10 20 30 40

AOA [deg.]
−1

0

1

2

3

4

5

6

7

C
l 
[-

]

Pos = 5E, β = -35.4 deg.

EllipSys2D total
EllipSys2D main
EllipSys2D slat
Exp total
Exp main
Exp slat

−20 −10 0 10 20 30 40

AOA [deg.]
0.00

0.05

0.10

0.15

0.20

0.25

C
d
 [

-]

Pos = 5E, β = -35.4 deg.

EllipSys2D total
Experiment - WR

Figure 10.29. Lift and drag coefficients for the flatback airfoil with the slat in position 5E with
β=-35.35 degrees tested at Re=2×106.

’2D’ wind tunnel effects

To investigate to what degree the top and bottom wall of the wind tunnel had influence on the
measurements, 2D CFD computations were carried out in a domain with top and bottom walls
specified as symmetry conditions. The mesh used for this investigation was different from that
used in the rest of this work and is therefore described below.

To carry out the simulations an overset grid was used with a Cartesian mesh discretizing the
tunnel domain and two individual curvilinear meshes for themain airfoil and slat, respectively.
This mesh had a considerably finer mesh resolution than the previously used meshes and con-
tained 164000 cells. Figure 10.30 shows the tunnel mesh and details around the slat element.
Another mesh was created with identical cell distribution around each element and in the Carte-
sian mesh close to the geometry, but with the outer boundaries extended 40 chord lengths away
from the surface.

Figure 10.31 shows the lift and drag coefficients computed using a fully patched mesh which
has no tunnel walls, and two overset grid simulations with and without tunnel walls compared
to the wind tunnel measurement. Firstly, notice that there is a fairly large difference between
the ’Std’ fully pathced grid computations and the overset grid computations for angles of attack
above 20 degrees with a significantly higherCl−max in the overset simulations. Including the
tunnel walls clearly has a significant influence on the lift coefficient, with an increase of 5% in
Cl−max.

The computations with increased mesh resolution as well as tunnel walls, are not, however, in
better agreement with the measurements than the patched grid computations. On the contrary,
the discrepancy aroundCl−max is even larger. However, at angles of attack below 5 degrees the
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Figure 10.30. Overset grid for the multi-element airfoil with the slat in posiition 5E with upper
and lower tunnel walls included as symmetry boundaries.

measurements and tunnel grid simulations are in very good agreement.

Turning to the drag coefficient, including the tunnel appears to reduce the drag coefficient
slightly, but not to the extent that the agreement with the experimental data becomes noticeably
better.
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Figure 10.31. Lift and drag coefficients for the multi-element airfoil with the slat in position 5E
tested at Re=2×106 in a 2D tunnel configuration.

3D flow effects due to wall interference

As discussed in Section 10.5 the three measurement sources for the lift and drag were not in
very good agreement. Particularly the drag measurements were in very poor agreement with
both the load cell drag and airfoil pressure drag increasingdrastically for angles of attack
over 5 degrees. Something not observed in the wake rake measurements or in the 2D CFD
simulations. The sudden increase in drag was as discussed accompanied by a change in slope
of the lift curve, something that was observed both for the isolated flatback airfoil and when
fitted with the slat. It was hypothesised that this behaviourwas caused by an onset of 3D flow
caused by the side walls.

Flow visualizations were carried out using wool tufts mounted on the airfoil surfaces. These vi-
sualizations confirmed the hypothesis, which is clearly visible in Figure 10.33 which shows the
airfoil operating at three different angles of attack. The picture is overlaid with lines highlight-
ing the 3D flow structures showing two large flow structures emanating from the side walls,
growing in extent with increasing angle of attack. To remedythis very undesirable flow feature
it was attempted to mount vortex generators upstream of the point where the 3D flow structures
occurred, both on the side walls and on the main airfoil. Although slight improvements were
observed on the lift coefficient around the onset of its occurrence at 5 degrees angle of attack,

Risø–R–1803(EN) 139



no improvement was observed in the drag coefficient.

To further investigate to what extent the flow was three-dimensional over the airfoil surface,
measurements were carried out where the wake rake was traversed laterally along the span of
the airfoil model. Two angles of attack were investigated, with two measurements at each angle
of attack. Figure 10.32 shows the drag coefficient as function of lateral position for 0 degrees
and 15 degrees angle of attack. At 0 degrees angle of attack there is a fairly high variation along
the span and also some difference between the two measurements suggesting that the flow may
be unsteady even at low angles of attack. At 15 degrees angle of attack the drag also varies
quite significantly along the span. At± 250 mm spanwise position the Series 34 measurement
measured a very high drag of 0.54, which is not seen to the sameextent in Series 36. This
suggests that the flow near the sides of the tunnel is highly unsteady.
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Figure 10.32. Drag coefficient as function of lateral measurement position for the multi-element
airfoil with the slat in posiition 5E tested at Re=2×106. 0 mm is the center of the tunnel. The
total tunnel width is 1400 mm.

The flow visualizations and wake rake traversals thus clearly demonstrated that the flow was
not nominally 2D above 5 degrees angle of attack. The consequence of this was that flow
measurements, whether sectional measurements as in the case of the airfoil pressure or integral
as for the load cell, were fundamentally not 2D, making comparison of the experimental data
to 2D CFD simulations very difficult. This finding supports the hypothesis that the change in
lift curve slope at 5 degrees angle of attack was due to wall interference effects. As discussed
by Rumsey et al. [2] it is very difficult to retain 2D flow characteristics near stall in wind
tunnel measurements on high lift configurations. Side wall venting improved the flow quality
considerable, but did not entirely remove the side wall effects.

Beyond stall, a peculiar flow phenomenon was observed, whereseemingly the flow was not
stalled on the main airfoil shown for 50 degrees angle of attack in Figure 10.34. As is evident
from the picture the flow is fully stalled on the slat with the tufts pointing upstream, yet, the
tufts on the main element indicate that the flow is attached. Note also that the two separated
regions near the side walls of the tunnel are no longer present.

A particle tracking simulation was carried out using EllipSys2D where the same flow phe-
nomenon could be observed. Figure 10.35 shows a snapshot of the flowfield with the slat in
position 5E at 40 degrees angle of attack with particles seeded upstream of the airfoil. Par-
ticles that pass in between the slat airfoil and main airfoilappear to remain attached to the
surface although the flow above the surface is fully stalled.Immediately above the surface of
the main airfoil a small secondary vortex is formed below themain vortex which periodically
is shed along with the main vortex emanating from the main airfoil trailing edge. This periodic
shedding was believed also to have been observed in the experiment where very short bursts
occurred where the tufts on the main airfoil would reverse direction and subsequently reattach
to the surface.
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Figure 10.33. Wool tufts flow visualization of the slatted airfoil at various angles of attack.

Figure 10.34. Wool tufts flow visualization of the slatted airfoil operating at 50 degrees angle
of attack.

10.6 Summary and Conclusions

A wind tunnel measurement campaign was carried out on a newlydesigned thick, flatback,
high-lift airfoil which consisted of a 40% thick main airfoil and a forward slat airfoil of 30%
length relative to the main airfoil. The resulting data was used in an extensive validation study
with comparisons between experimental data and computations performed using the incom-
pressible Navier-Stokes solver EllipSys2D. Based on the results, a number of general tenden-
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Figure 10.35. Snapshot of the flowfield of the configuration with the slat in position 5E operat-
ing at 40 degrees angle of attack.

cies observed in the measurements and computations were identified. Below, a summary of the
main conclusions will be attempted.

Summary of the main observations made from the experiment:

• The measured airfoil pressure and wall pressureCl−maxdiffered by 8%. The three sources
of measurement for both lift and drag were quite inconsistent, indicating the presence of
3D flow structures on the airfoil.

• The measurement data exhibited a ’kink’ in the main element lift curve and subsequent
change in slope around 5 degrees angle of attack for all configurations which was caused
by the onset of 3D flow structures emanating from the side walls.

• The wake rake drag measurement was generally associated with uncertainty as well as
inconsistency for some slat positions.

Summary of the main observations made in the CFD study:

• The computed lift on the slat airfoil was consistently in better agreement with the experi-
ment than on the main airfoil.

• Trends due to changes in slat position and angle were not predicted consistently by CFD.

• The flow had a tendency to stall earlier on the main airfoil in the computations than in the
experiment.

• The stall behaviour in the computations was generally more abrupt than in the experiment.

• Steady state simulations appear to be inadequate for predicting the correct stall behaviour
with unnatural increases in lift at the point of stall.

• For configurations where the two elements were in close proximity, the computations
predicted higher suction in the gap region between the two elements.

• Including top and bottom tunnel walls resulted in an increase in Cl−max of 5% in 2D
simulations.
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